The hormesis concept demonstrates that in contrast to the toxic effect of high doses of materials, irradiation, etc., low doses of them are beneficial and, in addition, help to eliminate (prevent) the deleterious effect of high doses given after it. By this effect, it is an important factor of (human) evolution protecting man from harmful impacts, similarly to the role of immunity. However, immunity is also continuously influenced by hormetic effects of environmental [chemical (pollutions), physical (background irradiations and heat), etc.] and medical (drugs and therapeutic irradiations) and food interactions. In contrast to earlier beliefs, the no-threshold irradiation dogma is not valid in low-dose domains and here the hormesis concept is valid. Low-dose therapeutic irradiation, as well as background irradiations (by radon spas or moderately far from the epicenter of atomic bomb or nuclear facilities), is rather beneficial than destructive and the fear from them seems to be unreasonable from immunological point of view. Practically, all immune parameters are beneficially influenced by all forms of low-dose radiations.
Calabrese, E. J. , Baldwin, L. A. : The marginalization of hormesis. Hum Exp Toxicol 19, 32–40 (2000).
Calabrese, E. J. : Hormesis: A fundamental concept in biology. Microb Cell 5, 145–149 (2014).
Calabrese, E. J. : Hormesis and medicine. Br J Clin Pharmacol 66, 594–617 (2008).
Calabrese, E. J. , Mattson, M. P. : How does hormesis impact biology, toxicology and medicine? Aging Mech Dis 3, 1–5 (2017).
Calabrese, E. J. , Dhawan, G. , Kapoor, R. , Iavicoli, I. , Calabrese, V. : What is hormesis and its relevance to healthy aging and longevity? Biogerontology 16, 693–717 (2015).
Calabrese, E. J. : Hormetic mechanisms. Crit Rev Toxicol 43, 580–606 (2013).
Mattson, M. P. : Hormesis defined. Ageing Res Rev 7, 1–7 (2008).
Zimmermann, A. , Baqure, M. A. , Kroemer, G. , Madeo, F. , Carmona-Gutierrez, D. : When less is more: Hormesis against stress and disease. Microb Cell 1, 150–153 (2014).
Stumpf, W. E. : The dose makes the medicine. Drug Discov Today 11, 550–555 (2006).
Scott, B. R. : Small radiation doses enhance natural barriers to cancer. J Am Phys Surg 22, 105–110 (2017).
Cui, J. , Yang, G. , Pan, Z. , Zhao, Y. , Liang, X. , Li, W. , Cai, L. : Hormetic response to low-dose radiation: Focus on the immune system and its clinical implications. Int J Mol Sci 18, 280 (2017).
Clanton, R. , Saucier, D. , Ford, J. , Akabani, G. : Microbial influences on hormesis, oncogenesis and therapy: A review of the literature. Environ Res 142, 239–256 (2015).
Ina, Y. , Sakai, K. : Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains: Analysis of immune cell populations and surface molecules. Int J Radiat Biol 81, 721–729 (2005).
Mishra, K. P. : Carcinogenic risk from low-dose radiation exposure is overestimated. J Radiat Cancer Res 8, 1–3 (2017).
Ren, H. , Shen, J. , Tomiyama Miyaji, C. , Watanabe, M. , Kainuma, E. , Inoue, M. , Abo, T. : Augmentation of innate immunity by low-dose irradiation. Cell Immunol 244, 50–56 (2006).
Rubner, Y. , Wunderlich, R. , Rühle, P. F. , Kulzer, L. , Werthmöller, N. , Frey, B. , Weiss, E. M. , Keilholz, L. , Fietkau, R. , Gaipl, U. S. : How does ionizing radiation contribute to the induction of antitumor immunity? Front Oncol 2, 75 (2012).
Liu, S. Z. : Current status of research on radiation hormesis in the immune system after low level radiation. J Radiat Res Radiat Process 13, 129–139 (1995).
Liu, S. Z. : On radiation hormesis expressed in the immune system. Crit Rev Toxicol 33, 431–441 (2003).
Liu, S. Z. , Liu, W. H. , Sun, J. B. : Radiation hormesis: Its expression in the immune system. Health Phys 52, 579–583 (1987).
Pandey, R. , Shankar, B. S. , Sharma, D. , Sainis, K. B. : Low dose radiation induced immunomodulation: Effect on macrophages and CD8+ T cells. Int J Radiat Biol 81, 801–812 (2005).
Nowosielska, E. M. , Wrembel-Wargocka, J. , Cheda, A. , Lisiak, E. , Janiak, M. K. : Enhanced cytotoxic activity of macrophages and suppressed tumor metastases in mice irradiated with low doses of X-rays. J Radiat Res 47, 229–236 (2006).
Cheda, A. , Nowosielska, E. M. , Wrembel-Wargocka, J. , Janiak, M. K. : Production of cytokines by peritoneal macrophages and splenocytes after exposures of mice to low doses of X-rays. Radiat Environ Biophys 47, 275–283 (2008).
Cheda, A. , Sonn, C. H. , Choi, J. R. , Kim, T. J. , Yu, Y. B. , Kim, K. , Shin, S. C. , Park, G. H. , Shirakawa, T. , Kim, H. S. , Lee, K. M. : Augmentation of natural cytotoxicity by chronic low-dose ionizing radiation in murine natural killer cells primed by IL-2. J Radiat Res 53, 823–829 (2012).
Yang, G. , Kiong, O. , Wang, G. , Jin, H. , Zhou, L. , Niu, C. , Han, W. , Li, W. , Cui, J. : Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother Radiopharm 29, 428–434 (2014).
Kojima, S. : Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma rays. Yakugaku Zasshi 126, 849–857 (2006).
Liu, X. D. , Ma, S. M. , Liu, S. Z. : Effects of 0.075 Gy X-ray irradiation on the expression of IL-10 and IL-12 in mice. Phys Med Biol 48, 2041–2049 (2003).
Yu, N. , Wang, S. , Song, X. , Gao, L. , Li, W. , Yu, H. , Zhou, C. , Wang, Z. , Li, F. , Jiang, Q. : Low-dose radiation promotes dendritic cell migration and IL-12 production via the ATM/NF-KappaB pathway. Radiat Res 189, 409–417 (2018).
Merlot, E. , Couret, D. , Otten, W. : Prenatal stress, fetal imprinting and immunity. Brain Behav Immun 22, 42–51 (2008).
Janiak, M. K. , Wincenciak, M. , Cheda, A. , Novosielska, E. M. , Calabrese, E. J. : Cancer immunotherapy: How low-level ionizing radiation can play a key role. Cancer Immunol Immunother 66, 819–832 (2017).
Wang, G. J. , Cai, L. : Induction of cell-proliferation hormesis and cell survival adaptive response in mouse hematopoietc cells by whole-body low-dose radiation. Toxicol Sci 53, 369–376 (2000).
Lee, Y. T. , Sung, F. C. , Lin, R. S. , Hsu, H. C. , Chien, K. L. , Yang, C. Y. , Chen, W. J. : Peripheral blood cells among community residents living near nuclear power plants. Sci Total Environ 280, 165–172 (2001).
Georgieva, R. T. , Zaharieva, E. K. , Rupova, I. M. , Acheva, A. R. , Nikolov, V. N. : DNA damage and repair in white blood cells at occupational exposure. J Physics Conf Ser 101, 1–31 (2008).
Feinendegen, L. E. , Pollycove, M. : Biologic responses to low doses of ionizing radiation: Detriment versus hormesis. Part 1. Dose responses of cells and tissues. J Nucl Med 42, 17N–27N (2001).
Pollycove, M. , Feinendegen, L. E. : Biologic responses to low doses of ionizing radiation: Detriment versus hormesis. Part 2. Dose responses of organisms. J Nucl Med 42, 26N–32N (2001).
Kojima, S. , Nakayama, K. , Ishida, H. : Gamma-rays activate immune functions via induction of glutathione and delay tumor growth. J Radiat Res 45, 33–39 (2004).
Dominko, K. , Dikic, D. : Glutathionylation: A regulatory role of glutathione in physiological processes. Arh Hig Raga Toksikol 69, 1–24 (2018).
Rico, A. : Chemo-defence system. C R Acad Sci 324, 97–106 (2001).
Gijs, T. , van Well, J. , Daalderop, L. A. , Wolfs, T. , Kramer, B. W. : Human perinatal immunity in physiological conditions and during infection. Mol Cell Pediatr 4, 4 (2017).
Calabrese, E. J. , Baldwin, A. : Radiation hormesis and cancer. Hum Ecol Risk Assess 8, 327–353 (2010).
Cheda, A. , Wrember-Wargocka, J. , Lisiak, E. , Marciniak, M. , Janiak, M. K. : Single low doses of X-rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiat Res 161, 335–340 (2004).
Vaiserman, A. , Mekhova, L. V. , Koshel, N. M. , Voitenko, V. P. : Cancer incidence and mortality after low-dose radiation exposure: Epidemiological aspects. Radiats Biol Radioecol 50, 691–702 (2010).
Liang, X. , Gu, J. , Yu, D. , Wang, G. , Zhou, L. , Zhang, X. , Zhao, Y. , Chen, X. , Zheng, S. , Liu, Q. , Cai, L. , Cui, J. , Li, W. : Low-dose radiation induces cell proliferation in human embryonic lung fibroblasts but not in lung cancer cells: Importance of ERK and AKT signaling pathways. Dose Response 14, 155932581562374 (2016).
Parsons, P. A. : Hormesis: An adaptive expectation with emphasis on ionizing radiation. J Appl Toxicol 20, 103–112 (2000).
Sanders, C. L. , Scott, B. R. : Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose Response 6, 53–79 (2006).
Scott, B. R. : Residential radon appears to prevent lung cancer. Dose Response 9, 444–464 (2011).
Luckey, T. D. : Nurture with ionizing radiation: A provocative hypothesis. Nutr Cancer 34, 1–11 (1999).
Rühle, P. F. , Wunderlich, R. , Deloch, L. , Fournier, C. , Maier, A. , Klein, G. , Fitkau, R. , Gaipl, U. S. , Frey, B. : Modulation of the peripheral immune system after low-dose radon spa therapy: Detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 50, 133–140 (2017).
Sanders, C. L. : Potential treatment of inflammatory and proliferative diseases by ultra-low doses of ionizing radiation. Dose Response 10, 610–625 (2012).
Takahashi, M. , Kojima, S. : Suppression of atopic dermatitis and tumor metastasis in mice by small amounts of radon. Radiat Res 165, 337–342 (2006).
Molaie, Y. , Latifynia, A. , Kalamzadeh, A. , Abufazeli, T. , Nuraie, M. , Khansani, M. : Phagocyte functions of human subjects living in high level of natural radiation areas in Iran. J Ayub Med Coll Abbottabad 24, 177–179 (2012).
Nagarkatti, M. , Nagarkatti, P. S. , Brooks, A. : Effect of radon on the immune system: Alterations in the cellularity and functions of T cells in lymphoid organs of mouse. J Toxicol Environ Health 47, 535–552 (1996).
Mine, M. , Okumura, Y. , Ichimaru, M. , Nakamura, T. , Kondo, S. : Apparently beneficial effect of low to intermediate doses of A-bomb radiation on human lifespan. Int J Radiat Biol 58, 1035–1043 (1990).
Hart, J. : Cancer mortality for a single race in low versus high elevation counties in the U.S. Dose Response 9, 348–355 (2011).
Lehrer, S. , Rosenzweig, K. E. : Lung cancer hormesis in high impact states where nuclear testing occurred. Clin Lung Cancer 16, 152–155 (2015).
Robinson, A. B. : Radiation hormesis, cancer, and freedom in American medicine. J Am Phys Surg 18, 74–77 (2013).
Nambi, K. S. , Soman, S. D. : Environmental radiation and cancer in India. Health Phys 52, 653–657 (1987).
Mifune, M. , Sobue, T. , Arimoto, H. , Komoto, Y. , Kondo, S. , Tanook, H. : Cancer mortality survey in a spa area (Misasa, Japan) with a high radon background. Jpn J Cancer Res 83, 1–5 (1992).
McGeoghean, D. , Binks, K. : The mortality and cancer morbidity experience of workers at the Capenhurst uranium enrichment facility 1946–1995. J Radiol Prot 20, 381–401 (2000).
Boice, J. D. Jr. , Mumma, M. T. , Blot, W. J. : Cancer mortality among populations residing in counties near the Hanford site, 1950–2000. Health Phys 90, 431–445 (2006).
Rubner, Y. , Wunderlich, R. , Rühle, P.-F. , Kulzer, L. , Werthmöller, N. , Frey, B. , Weiss, E.-M. , Keilholz, L. , Fietkau, R. , Gaipl, U. S. : How does ionizing irradiation contribute to the induction of anti-tumor immunity. Front Oncol 25, 75 (2012).
Lehrer, S. , Green, S. , Rosenzweig, K. E. : Reduced ovarian cancer incidence in women exposed to low dose ionizing background radiation or radiation to the ovaries after treatment for breast cancer or rectosigmoid cancer. Asian Pac J Cancer Prev 17, 2979–2982 (2016).
Cui, J. , Yang, G. , Pan, Z. , Zhao, Y. , Loang, X. , Li, W. : Hormetic response to low-dose radiation: Focus on the immune system and its clinical implications. Int J Mol Sci 18, 280–283 (2017).
Tsukimoto, M. , Nakatsukasa, H. , Sugawara, K. , Yamashita, K. , Kojima, S. : Repeated 0.5-Gy gamma irradiation attenuates experimental autoimmune encephalomyelitis with up-regulation of regulatory T and suppression of IL17 production. Radiat Res 170, 429–436 (2008).
Tago, F. , Tsukimoto, M. , Nakatsukasa, H. , Kojima, S. : Repeated 0.5-Gy gamma irradiation 1273-12 attenuates autoimmune disease in MRL-Ipr mice with suppression of CD3+CD4-CD8-B220+ T cell proliferation and with up-regulation of CD4+CD25+Foxp3+ regulatory T cells. Radiat Res 169, 59–66 (2008).
Nakatsukasa, H. , Tsukimoto, M. , Ohshima, Y. , Tago, F. , Masada, A. , Kojima, S. : Suppressing effect of low-dose gamma irradiation on collagen-induced arthritis. J Radiat Res 49, 381–389 (2008).
Zhongrong, L. , Chen, H. , Yang, H. , Liang, J. , Li, X. : Low-dose UVA radiation induced adaptive response in cultured human dermal fibroblasts. Int J Photoenergy 2012, 167425 (2012).
Calabrese, E. J. : Hormetic dose-response relationships in immunology: Occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 35, 89–295 (2005).
Frey, B. , Hehlgans, S. , Rödel, F. , Gaipl, U. S. : Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases. Cancer Lett 368, 230–237 (2015).
Rödel, F. , Frey, B. , Manda, K. , Hildebrandt, G. , Hehlgans, S. , Keilholz, L. , Seegenschmiedt, M. H. , Gaipl, U. S. , Rödel, C. : Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose X-irradiation. Front Oncol 25, 120 (2012).
Weis, S. , Rubio, I. , Ludwig, K. , Weigel, C. , Jentho, E. : Hormesis and defense of infectious disease. Int J Mol Sci 18, 1273–1280 (2017).
Kouda, K. , Iki, M. : Beneficial effects of mild stress (hormetic effects): Dietary restriction and health. J Physiol Anthropol 29, 127–132 (2010).
Shushimita, S. , Grefhorst, A. , Steenbergen, J. , de Bruin, R. , Ijzermans, J. N. , Themmen, A. P. , Dor, F. J. : Protection against renal ischemia-reperfusion injury through hormesis? Dietary intervention versus cold exposure. Life Sci 144, 69–79 (2016).
Kalemba-Drozdz, M. : The interaction between air pollution and diet does not influence the DNA damage in lymphocytes of pregnant women. Environ Res 136, 295–299 (2015).
Dickel, F. , Münch, D. , Amdam, G. V. , Mappes, J. , Freitak, D. : Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS One 13, e0191256 (2018).
Luckey, T. D. : Physiological benefits from low levels of ionizing radiation. Health Phys 43, 771–789 (1982).
Tang, F. R. , Loke, W. K. , Khoo, B. C. : Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. J Radiat Res 58, 165–182 (2017).
Rico, A. : Chemo-defence system. C R Acad Sci III 324, 97–106 (2001).
Luckey, T. D. : Radiation hormesis: The good, the bad, and the ugly. Dose Response 27, 169–190 (2006).
Hunt, D. L. , Bowman, D. : A parametric model for detecting hormetic effects in developmental toxicity studies. Risk Anal 24, 65–72 (2004).
Shama, G. : Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharwest Biol Technol 44, 1–8 (2007).
Csaba, G. : The biological basis and clinical significance of hormonal imprinting, an epigenetic process. Clin Epigenetics 2, 187–196 (2011).
Csaba, G. : The hormonal system of the unicellular Tetrahymena: A review with evolutionary aspects. Acta Microbiol Immunol Hung 59, 131–156 (2012).
Csaba, G. : Immunoendocrinology: Faulty hormonal imprinting in the immune system. Acta Microbiol Immunol Hung 61, 89–106 (2014).
Csaba, G. : Hormonal imprinting in the unicellular Tetrahymena: The proto-model of epigenetics. Acta Microbiol Immunol Hung 59, 291–310 (2012).
Csaba, G. : Complex multicellular functions at a unicellular eukaryote level: Learning, memory and immunity. Acta Microbiol Immunol Hung 64, 105–120 (2017).
Lajkó, E. , Pállinger, É. , Csaba, G. : Durable effect of heat-stress on the hormone production of Tetrahymena. Effect of insulin on the consequences of stress. Acta Microbiol Immunol Hung 59, 249–256 (2012).
Deocaris, C. C. , Taira, K. , Kaul, S. C. , Wadhwa, R. : Mimotope-hormesis and mortalin/grp75/mthsp70: A new hypothesis on how infectious disease-associated epitope mimicry may explain low cancer burden in developing nations. FEBS Lett 579, 586–590 (2005).
Vaiserman, A. M. : Hormesis, adaptive epigenetic reorganisation, and implications for human health and longevity. Dose Response 8, 16–21 (2010).
Vaiserman, A. M. : Hormesis and epigenetics: Is there a link? Ageing Res Rev 10, 413–421 (2011).
Agathokleous, E. , Kitao, M. , Calabrese, E. J. : Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology. Environ Res 165, 274–278 (2018).
Dietert, R. R. , Piepenbrink, M. S. : The managed immune system: Protecting the womb to delay the tomb. Hum Exp Toxicol 27, 129–134 (2008).
Bogdándi, E. N. , Balogh, A. , Felgyinszki, N. , Szatmári, T. , Persa, E. , Hildebrandt, G. , Sáfrány, G. , Lumniczky, K. : Effects of low-dose radiation on the immune system of mice after total-body irradiation. Radiat Res 174, 481–489 (2010).
Xu, J. , Huang, G. , Guo, T. L. : Developmental bisphenol A exposure modulates immune-related diseases. Toxics 4, 23 (2016).
Weltje, L. , vom Saal, F. S. , Oehlmann, J. : Reproductive stimulation by low doses of xenoestrogens contrasts with the view of hormesis as an adaptive response. Hum Exp Toxicol 24, 431–437 (2005).
Csaba, G. : Effect of endocrine disruptor phytoestrogens on the immune system: Present and future. Acta Microbiol Immunol Hung 65, 1–14 (2018).
Kuo, C. H. , Yang, S. N. , Kuo, P. L. , Hung, C. H. : Immunomodulatory effects of environmental endocrine disrupting chemicals. Kaohsiung J Med Sci 28, S37–42 (2012).
Pearce, O. M. , Laubli, H. , Bui, J. , Varki, A. : Hormesis in cancer immunology. Does the quantity of an immune reactant matter? Oncoimmunology 3, e29312 (2014).
Cohen, B. L. : Cancer risk from low-level radiation. AJR Am J Roentgenol 179, 1137–1143 (2002).
Chun, S. H. , Park, G. Y. , Han, Y. K. , Kim, S. D. , Kim, J. S. , Lee, C. G. , Yang, K. : Effect of low dose radiation on bone marrow cells into dendritic cells. Dose Response 11, 374–384 (2012).
Janks, J. , Anderegg, U. , Saalbach, A. , Rosin, B. , Patties, I. , Glasow, A. , Kamprad, M. , Scholz, M. , Hildebrandt, G. : Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells. Mutat Res 10, 709–710 (2011).
Yang, G. , Kong, Q. , Wang, G. , Jin, H. , Zhou, L. , Yu, D. , Niu, C. , Han, W. , Li, W. , Cui, J. : Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother Radiopharm 29, 428–434 (2014).
Liu, S.-Z : Cancer control related to stimulation of immunity by low-dose radiation. Dose Response 5, 39–47 (2007).
Sinkovics, J. G. : “Up-dating the monograph.” [corrected] Cytolytic immune lymphocytes in the armamentarium of the human host. Acta Microbiol Immunol Hung 55, 371–382 (2008).
Liu, S. , Sun, X. , Luo, J. , Zhu, H. , Yang, X. , Guo, Q. , Song, Y. , Sun, X. : Effects of radiation on T regulatory cells in normal states and cancer: Mechanisms and clinical implications. Am J Cancer Res 5, 3276–3285 (2015).
Gaya, A. , Akle, C. A. , Mudan, S. , Grange, J. : The concept of hormesis in cancer therapy – Is less more? Cureus 7, 261 (2015).
Doss, M. : Linear no-threshold model vs. radiation hormesis. Dose Response 11, 495–512 (2013).
Feinendegen, L. E. : Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78, 3–7 (2014).
Bukowski, J. A. , Lewis, R. J. : Is the hygiene hypothesis an example of hormesis? Nonlinearity Biol Toxicol Med 1, 155–166 (2003).
Yang, G. , Li, W. , Jiang, H. , Liang, X. , Zhao, Y. , Yu, D. , Zhou, L. , Wang, G. , Tian, H. , Han, F. , Cai, L. , Cui, J. : Low-dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics. Int J Cancer 139, 2157–2168 (2016).
Calabrese, E. J. : Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks. Pharmacol Res 110, 265–275 (2016).
Shevchuk, N. A. , Radoja, S. : Possible stimulation of anti-tumor immunity using repeated cold (heat induced) stress: A hypothesis. Infect Agent Cancer 2, 20 (2007).
Bloom, E. T. , Akiyama, M. , Korn, E. L. , Kusunoki, Y. , Makinodan, T. : Immunological responses of aging Japanese A-bomb survivors. Radiat Res 116, 343–355 (1988).
Sorensen, J. G. , Kristensen, T. N. , Kristensen, K. V. , Loeschke, V. : Sex specific effects of the induced hormesis in Hsf-deficient Drosophila melanogaster. Exp Gerontol 42, 1123–1129 (2007).
Sarup, P. , Loeschke, V. : Life extension and the position of the hormetic zone depends sex and genetic background in Drosophila melanogaster. Biogerontology 12, 109–112 (2011).
Henten, A. M. , Loeschke, V. , Pedersen, J. G. , Leisner, J. J. , Sarup, P. : Injuries can prolong lifespan in Drosophila melanogaster males. Biogerontology 17, 337–346 (2016).
Dimova, E. G. , Bryant, P. E. , Chankiva, S. G. : “Adaptive response” – Some underlying mechanisms and open questions. Genet Mol Biol 31, 396–408 (2017).
Narbutt, J. , Lesiak, A. , Sysa-Jedrzejowska, A. , Wozniacka, A. , Cierniewska-Cieslak, A. , Boncela, J. , Jochymski, C. , Kozlowsky, W. , Zalewska, A. , Skibinska, M. , Norval, M. : Repeated low-dose ultraviolet (UV) B exposures of humans induce limited photoprotection against immune effects of erythemal UVB radiation. Br J Dermatol 156, 539–547 (2007).
Cela, E. M. , Gonzalez, C. D. , Friedrich, A. , Ledo, C. , Paz, M. L. , Leoni, J. , Gómez, M. I. , Gonzalez Maglio, D. H. : Daily very low UV dose exposure enhances adaptive immunity, compared with a single high-dose exposure. Consequences for the control of a skin infection. Immunology 154, 510–521 (2018).