Author:
György Csaba Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary

Search for other papers by György Csaba in
Current site
Google Scholar
PubMed
Close
Restricted access

The hormesis concept demonstrates that in contrast to the toxic effect of high doses of materials, irradiation, etc., low doses of them are beneficial and, in addition, help to eliminate (prevent) the deleterious effect of high doses given after it. By this effect, it is an important factor of (human) evolution protecting man from harmful impacts, similarly to the role of immunity. However, immunity is also continuously influenced by hormetic effects of environmental [chemical (pollutions), physical (background irradiations and heat), etc.] and medical (drugs and therapeutic irradiations) and food interactions. In contrast to earlier beliefs, the no-threshold irradiation dogma is not valid in low-dose domains and here the hormesis concept is valid. Low-dose therapeutic irradiation, as well as background irradiations (by radon spas or moderately far from the epicenter of atomic bomb or nuclear facilities), is rather beneficial than destructive and the fear from them seems to be unreasonable from immunological point of view. Practically, all immune parameters are beneficially influenced by all forms of low-dose radiations.

  • 1.

    Calabrese, E. J. , Baldwin, L. A. : The marginalization of hormesis. Hum Exp Toxicol 19, 3240 (2000).

  • 2.

    Calabrese, E. J. : Hormesis: A fundamental concept in biology. Microb Cell 5, 145149 (2014).

  • 3.

    Calabrese, E. J. : Hormesis and medicine. Br J Clin Pharmacol 66, 594617 (2008).

  • 4.

    Calabrese, E. J. , Mattson, M. P. : How does hormesis impact biology, toxicology and medicine? Aging Mech Dis 3, 15 (2017).

  • 5.

    Calabrese, E. J. , Dhawan, G. , Kapoor, R. , Iavicoli, I. , Calabrese, V. : What is hormesis and its relevance to healthy aging and longevity? Biogerontology 16, 693717 (2015).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Calabrese, E. J. : Hormetic mechanisms. Crit Rev Toxicol 43, 580606 (2013).

  • 7.

    Mattson, M. P. : Hormesis defined. Ageing Res Rev 7, 17 (2008).

  • 8.

    Zimmermann, A. , Baqure, M. A. , Kroemer, G. , Madeo, F. , Carmona-Gutierrez, D. : When less is more: Hormesis against stress and disease. Microb Cell 1, 150153 (2014).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Stumpf, W. E. : The dose makes the medicine. Drug Discov Today 11, 550555 (2006).

  • 10.

    Scott, B. R. : Small radiation doses enhance natural barriers to cancer. J Am Phys Surg 22, 105110 (2017).

  • 11.

    Cui, J. , Yang, G. , Pan, Z. , Zhao, Y. , Liang, X. , Li, W. , Cai, L. : Hormetic response to low-dose radiation: Focus on the immune system and its clinical implications. Int J Mol Sci 18, 280 (2017).

    • Search Google Scholar
    • Export Citation
  • 12.

    Clanton, R. , Saucier, D. , Ford, J. , Akabani, G. : Microbial influences on hormesis, oncogenesis and therapy: A review of the literature. Environ Res 142, 239256 (2015).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ina, Y. , Sakai, K. : Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains: Analysis of immune cell populations and surface molecules. Int J Radiat Biol 81, 721729 (2005).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Mishra, K. P. : Carcinogenic risk from low-dose radiation exposure is overestimated. J Radiat Cancer Res 8, 13 (2017).

  • 15.

    Ren, H. , Shen, J. , Tomiyama Miyaji, C. , Watanabe, M. , Kainuma, E. , Inoue, M. , Abo, T. : Augmentation of innate immunity by low-dose irradiation. Cell Immunol 244, 5056 (2006).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rubner, Y. , Wunderlich, R. , Rühle, P. F. , Kulzer, L. , Werthmöller, N. , Frey, B. , Weiss, E. M. , Keilholz, L. , Fietkau, R. , Gaipl, U. S. : How does ionizing radiation contribute to the induction of antitumor immunity? Front Oncol 2, 75 (2012).

    • Search Google Scholar
    • Export Citation
  • 17.

    Liu, S. Z. : Current status of research on radiation hormesis in the immune system after low level radiation. J Radiat Res Radiat Process 13, 129139 (1995).

    • Search Google Scholar
    • Export Citation
  • 18.

    Liu, S. Z. : On radiation hormesis expressed in the immune system. Crit Rev Toxicol 33, 431441 (2003).

  • 19.

    Liu, S. Z. , Liu, W. H. , Sun, J. B. : Radiation hormesis: Its expression in the immune system. Health Phys 52, 579583 (1987).

  • 20.

    Pandey, R. , Shankar, B. S. , Sharma, D. , Sainis, K. B. : Low dose radiation induced immunomodulation: Effect on macrophages and CD8+ T cells. Int J Radiat Biol 81, 801812 (2005).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Nowosielska, E. M. , Wrembel-Wargocka, J. , Cheda, A. , Lisiak, E. , Janiak, M. K. : Enhanced cytotoxic activity of macrophages and suppressed tumor metastases in mice irradiated with low doses of X-rays. J Radiat Res 47, 229236 (2006).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cheda, A. , Nowosielska, E. M. , Wrembel-Wargocka, J. , Janiak, M. K. : Production of cytokines by peritoneal macrophages and splenocytes after exposures of mice to low doses of X-rays. Radiat Environ Biophys 47, 275283 (2008).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cheda, A. , Sonn, C. H. , Choi, J. R. , Kim, T. J. , Yu, Y. B. , Kim, K. , Shin, S. C. , Park, G. H. , Shirakawa, T. , Kim, H. S. , Lee, K. M. : Augmentation of natural cytotoxicity by chronic low-dose ionizing radiation in murine natural killer cells primed by IL-2. J Radiat Res 53, 823829 (2012).

    • Search Google Scholar
    • Export Citation
  • 24.

    Yang, G. , Kiong, O. , Wang, G. , Jin, H. , Zhou, L. , Niu, C. , Han, W. , Li, W. , Cui, J. : Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother Radiopharm 29, 428434 (2014).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kojima, S. : Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma rays. Yakugaku Zasshi 126, 849857 (2006).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Liu, X. D. , Ma, S. M. , Liu, S. Z. : Effects of 0.075 Gy X-ray irradiation on the expression of IL-10 and IL-12 in mice. Phys Med Biol 48, 20412049 (2003).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Yu, N. , Wang, S. , Song, X. , Gao, L. , Li, W. , Yu, H. , Zhou, C. , Wang, Z. , Li, F. , Jiang, Q. : Low-dose radiation promotes dendritic cell migration and IL-12 production via the ATM/NF-KappaB pathway. Radiat Res 189, 409417 (2018).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Merlot, E. , Couret, D. , Otten, W. : Prenatal stress, fetal imprinting and immunity. Brain Behav Immun 22, 4251 (2008).

  • 29.

    Janiak, M. K. , Wincenciak, M. , Cheda, A. , Novosielska, E. M. , Calabrese, E. J. : Cancer immunotherapy: How low-level ionizing radiation can play a key role. Cancer Immunol Immunother 66, 819832 (2017).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wang, G. J. , Cai, L. : Induction of cell-proliferation hormesis and cell survival adaptive response in mouse hematopoietc cells by whole-body low-dose radiation. Toxicol Sci 53, 369376 (2000).

    • Search Google Scholar
    • Export Citation
  • 31.

    Lee, Y. T. , Sung, F. C. , Lin, R. S. , Hsu, H. C. , Chien, K. L. , Yang, C. Y. , Chen, W. J. : Peripheral blood cells among community residents living near nuclear power plants. Sci Total Environ 280, 165172 (2001).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Georgieva, R. T. , Zaharieva, E. K. , Rupova, I. M. , Acheva, A. R. , Nikolov, V. N. : DNA damage and repair in white blood cells at occupational exposure. J Physics Conf Ser 101, 131 (2008).

    • Search Google Scholar
    • Export Citation
  • 33.

    Feinendegen, L. E. , Pollycove, M. : Biologic responses to low doses of ionizing radiation: Detriment versus hormesis. Part 1. Dose responses of cells and tissues. J Nucl Med 42, 17N27N (2001).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pollycove, M. , Feinendegen, L. E. : Biologic responses to low doses of ionizing radiation: Detriment versus hormesis. Part 2. Dose responses of organisms. J Nucl Med 42, 26N32N (2001).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kojima, S. , Nakayama, K. , Ishida, H. : Gamma-rays activate immune functions via induction of glutathione and delay tumor growth. J Radiat Res 45, 3339 (2004).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Dominko, K. , Dikic, D. : Glutathionylation: A regulatory role of glutathione in physiological processes. Arh Hig Raga Toksikol 69, 124 (2018).

    • Search Google Scholar
    • Export Citation
  • 37.

    Rico, A. : Chemo-defence system. C R Acad Sci 324, 97106 (2001).

  • 38.

    Gijs, T. , van Well, J. , Daalderop, L. A. , Wolfs, T. , Kramer, B. W. : Human perinatal immunity in physiological conditions and during infection. Mol Cell Pediatr 4, 4 (2017).

    • Search Google Scholar
    • Export Citation
  • 39.

    Calabrese, E. J. , Baldwin, A. : Radiation hormesis and cancer. Hum Ecol Risk Assess 8, 327353 (2010).

  • 40.

    Cheda, A. , Wrember-Wargocka, J. , Lisiak, E. , Marciniak, M. , Janiak, M. K. : Single low doses of X-rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiat Res 161, 335340 (2004).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Vaiserman, A. , Mekhova, L. V. , Koshel, N. M. , Voitenko, V. P. : Cancer incidence and mortality after low-dose radiation exposure: Epidemiological aspects. Radiats Biol Radioecol 50, 691702 (2010).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Liang, X. , Gu, J. , Yu, D. , Wang, G. , Zhou, L. , Zhang, X. , Zhao, Y. , Chen, X. , Zheng, S. , Liu, Q. , Cai, L. , Cui, J. , Li, W. : Low-dose radiation induces cell proliferation in human embryonic lung fibroblasts but not in lung cancer cells: Importance of ERK and AKT signaling pathways. Dose Response 14, 155932581562374 (2016).

    • Search Google Scholar
    • Export Citation
  • 43.

    Parsons, P. A. : Hormesis: An adaptive expectation with emphasis on ionizing radiation. J Appl Toxicol 20, 103112 (2000).

  • 44.

    Sanders, C. L. , Scott, B. R. : Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose Response 6, 5379 (2006).

  • 45.

    Scott, B. R. : Residential radon appears to prevent lung cancer. Dose Response 9, 444464 (2011).

  • 46.

    Luckey, T. D. : Nurture with ionizing radiation: A provocative hypothesis. Nutr Cancer 34, 111 (1999).

  • 47.

    Rühle, P. F. , Wunderlich, R. , Deloch, L. , Fournier, C. , Maier, A. , Klein, G. , Fitkau, R. , Gaipl, U. S. , Frey, B. : Modulation of the peripheral immune system after low-dose radon spa therapy: Detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 50, 133140 (2017).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Sanders, C. L. : Potential treatment of inflammatory and proliferative diseases by ultra-low doses of ionizing radiation. Dose Response 10, 610625 (2012).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Takahashi, M. , Kojima, S. : Suppression of atopic dermatitis and tumor metastasis in mice by small amounts of radon. Radiat Res 165, 337342 (2006).

  • 50.

    Molaie, Y. , Latifynia, A. , Kalamzadeh, A. , Abufazeli, T. , Nuraie, M. , Khansani, M. : Phagocyte functions of human subjects living in high level of natural radiation areas in Iran. J Ayub Med Coll Abbottabad 24, 177179 (2012).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Nagarkatti, M. , Nagarkatti, P. S. , Brooks, A. : Effect of radon on the immune system: Alterations in the cellularity and functions of T cells in lymphoid organs of mouse. J Toxicol Environ Health 47, 535552 (1996).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Mine, M. , Okumura, Y. , Ichimaru, M. , Nakamura, T. , Kondo, S. : Apparently beneficial effect of low to intermediate doses of A-bomb radiation on human lifespan. Int J Radiat Biol 58, 10351043 (1990).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Hart, J. : Cancer mortality for a single race in low versus high elevation counties in the U.S. Dose Response 9, 348355 (2011).

  • 54.

    Lehrer, S. , Rosenzweig, K. E. : Lung cancer hormesis in high impact states where nuclear testing occurred. Clin Lung Cancer 16, 152155 (2015).

  • 55.

    Robinson, A. B. : Radiation hormesis, cancer, and freedom in American medicine. J Am Phys Surg 18, 7477 (2013).

  • 56.

    Nambi, K. S. , Soman, S. D. : Environmental radiation and cancer in India. Health Phys 52, 653657 (1987).

  • 57.

    Mifune, M. , Sobue, T. , Arimoto, H. , Komoto, Y. , Kondo, S. , Tanook, H. : Cancer mortality survey in a spa area (Misasa, Japan) with a high radon background. Jpn J Cancer Res 83, 15 (1992).

    • Search Google Scholar
    • Export Citation
  • 58.

    McGeoghean, D. , Binks, K. : The mortality and cancer morbidity experience of workers at the Capenhurst uranium enrichment facility 1946–1995. J Radiol Prot 20, 381401 (2000).

    • Search Google Scholar
    • Export Citation
  • 59.

    Boice, J. D. Jr. , Mumma, M. T. , Blot, W. J. : Cancer mortality among populations residing in counties near the Hanford site, 1950–2000. Health Phys 90, 431445 (2006).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Rubner, Y. , Wunderlich, R. , Rühle, P.-F. , Kulzer, L. , Werthmöller, N. , Frey, B. , Weiss, E.-M. , Keilholz, L. , Fietkau, R. , Gaipl, U. S. : How does ionizing irradiation contribute to the induction of anti-tumor immunity. Front Oncol 25, 75 (2012).

    • Search Google Scholar
    • Export Citation
  • 61.

    Lehrer, S. , Green, S. , Rosenzweig, K. E. : Reduced ovarian cancer incidence in women exposed to low dose ionizing background radiation or radiation to the ovaries after treatment for breast cancer or rectosigmoid cancer. Asian Pac J Cancer Prev 17, 29792982 (2016).

    • Search Google Scholar
    • Export Citation
  • 62.

    Cui, J. , Yang, G. , Pan, Z. , Zhao, Y. , Loang, X. , Li, W. : Hormetic response to low-dose radiation: Focus on the immune system and its clinical implications. Int J Mol Sci 18, 280283 (2017).

    • Search Google Scholar
    • Export Citation
  • 63.

    Tsukimoto, M. , Nakatsukasa, H. , Sugawara, K. , Yamashita, K. , Kojima, S. : Repeated 0.5-Gy gamma irradiation attenuates experimental autoimmune encephalomyelitis with up-regulation of regulatory T and suppression of IL17 production. Radiat Res 170, 429436 (2008).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Tago, F. , Tsukimoto, M. , Nakatsukasa, H. , Kojima, S. : Repeated 0.5-Gy gamma irradiation 1273-12 attenuates autoimmune disease in MRL-Ipr mice with suppression of CD3+CD4-CD8-B220+ T cell proliferation and with up-regulation of CD4+CD25+Foxp3+ regulatory T cells. Radiat Res 169, 5966 (2008).

    • Search Google Scholar
    • Export Citation
  • 65.

    Nakatsukasa, H. , Tsukimoto, M. , Ohshima, Y. , Tago, F. , Masada, A. , Kojima, S. : Suppressing effect of low-dose gamma irradiation on collagen-induced arthritis. J Radiat Res 49, 381389 (2008).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Zhongrong, L. , Chen, H. , Yang, H. , Liang, J. , Li, X. : Low-dose UVA radiation induced adaptive response in cultured human dermal fibroblasts. Int J Photoenergy 2012, 167425 (2012).

    • Search Google Scholar
    • Export Citation
  • 67.

    Calabrese, E. J. : Hormetic dose-response relationships in immunology: Occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 35, 89295 (2005).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Frey, B. , Hehlgans, S. , Rödel, F. , Gaipl, U. S. : Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases. Cancer Lett 368, 230237 (2015).

    • Search Google Scholar
    • Export Citation
  • 69.

    Rödel, F. , Frey, B. , Manda, K. , Hildebrandt, G. , Hehlgans, S. , Keilholz, L. , Seegenschmiedt, M. H. , Gaipl, U. S. , Rödel, C. : Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose X-irradiation. Front Oncol 25, 120 (2012).

    • Search Google Scholar
    • Export Citation
  • 70.

    Weis, S. , Rubio, I. , Ludwig, K. , Weigel, C. , Jentho, E. : Hormesis and defense of infectious disease. Int J Mol Sci 18, 12731280 (2017).

    • Search Google Scholar
    • Export Citation
  • 71.

    Kouda, K. , Iki, M. : Beneficial effects of mild stress (hormetic effects): Dietary restriction and health. J Physiol Anthropol 29, 127132 (2010).

  • 72.

    Shushimita, S. , Grefhorst, A. , Steenbergen, J. , de Bruin, R. , Ijzermans, J. N. , Themmen, A. P. , Dor, F. J. : Protection against renal ischemia-reperfusion injury through hormesis? Dietary intervention versus cold exposure. Life Sci 144, 6979 (2016).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Kalemba-Drozdz, M. : The interaction between air pollution and diet does not influence the DNA damage in lymphocytes of pregnant women. Environ Res 136, 295299 (2015).

    • Search Google Scholar
    • Export Citation
  • 74.

    Dickel, F. , Münch, D. , Amdam, G. V. , Mappes, J. , Freitak, D. : Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS One 13, e0191256 (2018).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Luckey, T. D. : Physiological benefits from low levels of ionizing radiation. Health Phys 43, 771789 (1982).

  • 76.

    Tang, F. R. , Loke, W. K. , Khoo, B. C. : Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. J Radiat Res 58, 165182 (2017).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Rico, A. : Chemo-defence system. C R Acad Sci III 324, 97106 (2001).

  • 78.

    Luckey, T. D. : Radiation hormesis: The good, the bad, and the ugly. Dose Response 27, 169190 (2006).

  • 79.

    Hunt, D. L. , Bowman, D. : A parametric model for detecting hormetic effects in developmental toxicity studies. Risk Anal 24, 6572 (2004).

  • 80.

    Shama, G. : Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharwest Biol Technol 44, 18 (2007).

    • Search Google Scholar
    • Export Citation
  • 81.

    Csaba, G. : The biological basis and clinical significance of hormonal imprinting, an epigenetic process. Clin Epigenetics 2, 187196 (2011).

  • 82.

    Csaba, G. : The hormonal system of the unicellular Tetrahymena: A review with evolutionary aspects. Acta Microbiol Immunol Hung 59, 131156 (2012).

  • 83.

    Csaba, G. : Immunoendocrinology: Faulty hormonal imprinting in the immune system. Acta Microbiol Immunol Hung 61, 89106 (2014).

  • 84.

    Csaba, G. : Hormonal imprinting in the unicellular Tetrahymena: The proto-model of epigenetics. Acta Microbiol Immunol Hung 59, 291310 (2012).

  • 85.

    Csaba, G. : Complex multicellular functions at a unicellular eukaryote level: Learning, memory and immunity. Acta Microbiol Immunol Hung 64, 105120 (2017).

    • Search Google Scholar
    • Export Citation
  • 86.

    Lajkó, E. , Pállinger, É. , Csaba, G. : Durable effect of heat-stress on the hormone production of Tetrahymena. Effect of insulin on the consequences of stress. Acta Microbiol Immunol Hung 59, 249256 (2012).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Deocaris, C. C. , Taira, K. , Kaul, S. C. , Wadhwa, R. : Mimotope-hormesis and mortalin/grp75/mthsp70: A new hypothesis on how infectious disease-associated epitope mimicry may explain low cancer burden in developing nations. FEBS Lett 579, 586590 (2005).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Vaiserman, A. M. : Hormesis, adaptive epigenetic reorganisation, and implications for human health and longevity. Dose Response 8, 1621 (2010).

    • Search Google Scholar
    • Export Citation
  • 89.

    Vaiserman, A. M. : Hormesis and epigenetics: Is there a link? Ageing Res Rev 10, 413421 (2011).

  • 90.

    Agathokleous, E. , Kitao, M. , Calabrese, E. J. : Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology. Environ Res 165, 274278 (2018).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Dietert, R. R. , Piepenbrink, M. S. : The managed immune system: Protecting the womb to delay the tomb. Hum Exp Toxicol 27, 129134 (2008).

  • 92.

    Bogdándi, E. N. , Balogh, A. , Felgyinszki, N. , Szatmári, T. , Persa, E. , Hildebrandt, G. , Sáfrány, G. , Lumniczky, K. : Effects of low-dose radiation on the immune system of mice after total-body irradiation. Radiat Res 174, 481489 (2010).

    • Search Google Scholar
    • Export Citation
  • 93.

    Xu, J. , Huang, G. , Guo, T. L. : Developmental bisphenol A exposure modulates immune-related diseases. Toxics 4, 23 (2016).

  • 94.

    Weltje, L. , vom Saal, F. S. , Oehlmann, J. : Reproductive stimulation by low doses of xenoestrogens contrasts with the view of hormesis as an adaptive response. Hum Exp Toxicol 24, 431437 (2005).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Csaba, G. : Effect of endocrine disruptor phytoestrogens on the immune system: Present and future. Acta Microbiol Immunol Hung 65, 114 (2018).

  • 96.

    Kuo, C. H. , Yang, S. N. , Kuo, P. L. , Hung, C. H. : Immunomodulatory effects of environmental endocrine disrupting chemicals. Kaohsiung J Med Sci 28, S3742 (2012).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Pearce, O. M. , Laubli, H. , Bui, J. , Varki, A. : Hormesis in cancer immunology. Does the quantity of an immune reactant matter? Oncoimmunology 3, e29312 (2014).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Cohen, B. L. : Cancer risk from low-level radiation. AJR Am J Roentgenol 179, 11371143 (2002).

  • 99.

    Chun, S. H. , Park, G. Y. , Han, Y. K. , Kim, S. D. , Kim, J. S. , Lee, C. G. , Yang, K. : Effect of low dose radiation on bone marrow cells into dendritic cells. Dose Response 11, 374384 (2012).

    • Search Google Scholar
    • Export Citation
  • 100.

    Janks, J. , Anderegg, U. , Saalbach, A. , Rosin, B. , Patties, I. , Glasow, A. , Kamprad, M. , Scholz, M. , Hildebrandt, G. : Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells. Mutat Res 10, 709710 (2011).

    • Search Google Scholar
    • Export Citation
  • 101.

    Yang, G. , Kong, Q. , Wang, G. , Jin, H. , Zhou, L. , Yu, D. , Niu, C. , Han, W. , Li, W. , Cui, J. : Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother Radiopharm 29, 428434 (2014).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Liu, S.-Z : Cancer control related to stimulation of immunity by low-dose radiation. Dose Response 5, 3947 (2007).

  • 103.

    Sinkovics, J. G. : “Up-dating the monograph.” [corrected] Cytolytic immune lymphocytes in the armamentarium of the human host. Acta Microbiol Immunol Hung 55, 371382 (2008).

    • Search Google Scholar
    • Export Citation
  • 104.

    Liu, S. , Sun, X. , Luo, J. , Zhu, H. , Yang, X. , Guo, Q. , Song, Y. , Sun, X. : Effects of radiation on T regulatory cells in normal states and cancer: Mechanisms and clinical implications. Am J Cancer Res 5, 32763285 (2015).

    • Search Google Scholar
    • Export Citation
  • 105.

    Gaya, A. , Akle, C. A. , Mudan, S. , Grange, J. : The concept of hormesis in cancer therapy – Is less more? Cureus 7, 261 (2015).

  • 106.

    Doss, M. : Linear no-threshold model vs. radiation hormesis. Dose Response 11, 495512 (2013).

  • 107.

    Feinendegen, L. E. : Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78, 37 (2014).

  • 108.

    Bukowski, J. A. , Lewis, R. J. : Is the hygiene hypothesis an example of hormesis? Nonlinearity Biol Toxicol Med 1, 155166 (2003).

  • 109.

    Yang, G. , Li, W. , Jiang, H. , Liang, X. , Zhao, Y. , Yu, D. , Zhou, L. , Wang, G. , Tian, H. , Han, F. , Cai, L. , Cui, J. : Low-dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics. Int J Cancer 139, 21572168 (2016).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Calabrese, E. J. : Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks. Pharmacol Res 110, 265275 (2016).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Shevchuk, N. A. , Radoja, S. : Possible stimulation of anti-tumor immunity using repeated cold (heat induced) stress: A hypothesis. Infect Agent Cancer 2, 20 (2007).

    • Search Google Scholar
    • Export Citation
  • 112.

    Bloom, E. T. , Akiyama, M. , Korn, E. L. , Kusunoki, Y. , Makinodan, T. : Immunological responses of aging Japanese A-bomb survivors. Radiat Res 116, 343355 (1988).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Sorensen, J. G. , Kristensen, T. N. , Kristensen, K. V. , Loeschke, V. : Sex specific effects of the induced hormesis in Hsf-deficient Drosophila melanogaster. Exp Gerontol 42, 11231129 (2007).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Sarup, P. , Loeschke, V. : Life extension and the position of the hormetic zone depends sex and genetic background in Drosophila melanogaster. Biogerontology 12, 109112 (2011).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Henten, A. M. , Loeschke, V. , Pedersen, J. G. , Leisner, J. J. , Sarup, P. : Injuries can prolong lifespan in Drosophila melanogaster males. Biogerontology 17, 337346 (2016).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Dimova, E. G. , Bryant, P. E. , Chankiva, S. G. : “Adaptive response” – Some underlying mechanisms and open questions. Genet Mol Biol 31, 396408 (2017).

    • Search Google Scholar
    • Export Citation
  • 117.

    Narbutt, J. , Lesiak, A. , Sysa-Jedrzejowska, A. , Wozniacka, A. , Cierniewska-Cieslak, A. , Boncela, J. , Jochymski, C. , Kozlowsky, W. , Zalewska, A. , Skibinska, M. , Norval, M. : Repeated low-dose ultraviolet (UV) B exposures of humans induce limited photoprotection against immune effects of erythemal UVB radiation. Br J Dermatol 156, 539547 (2007).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Cela, E. M. , Gonzalez, C. D. , Friedrich, A. , Ledo, C. , Paz, M. L. , Leoni, J. , Gómez, M. I. , Gonzalez Maglio, D. H. : Daily very low UV dose exposure enhances adaptive immunity, compared with a single high-dose exposure. Consequences for the control of a skin infection. Immunology 154, 510521 (2018).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 222 0 0
Nov 2024 115 14 4
Dec 2024 57 4 5
Jan 2025 171 1 2
Feb 2025 126 0 0
Mar 2025 151 0 0
Apr 2025 0 0 0