View More View Less
  • 1 Faculty of Optometry, Ramkhamhaeng University, Bangkok, , Thailand
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

In recent years, microbiota-associated neurodegenerative diseases have been exploited and provided new insight into disease pathogenesis. However, primary open-angle glaucoma (POAG), known as a complex neurodegenerative disease resulting from retinal ganglion cell death and optic nerve damage, can cause irreversible blindness and visual field loss. POAG, which shares several similarities with Parkinson’s disease (PD) and Alzheimer’s disease (AD), has limited studies and slow progression in the understanding of pathogenesis when compared to PD and AD. In this review, we summarized the current knowledge of POAG and commensal microbiota, combined with several lines of evidence in PD and AD to propose a possible hypothesis for POAG pathogenesis: microorganisms cause glaucoma via gut–retina axis, resulting in autoantibodies and autoreactive T cells that lead to autoimmunity. Furthermore, dual-hit hypothesis, an example of a commensal pathogen that causes PD, was partially exported in POAG. Finally, future perspectives are suggested to expand understanding of POAG.

  • 1.

    Chun, Y. S., Sung, K. R., Park, C. K., Kim, H. K., Yoo, C., Kim, Y. Y., Park, K. H., Kim, C. Y., Choi, K. R., Lee, K. W., Han, S., Kim, C. S., LIGHT (Life Quality of Glaucoma Patients Who Underwent Treatment) Study of the Korean Glaucoma Society: Vision-related quality of life according to location of visual field loss in patients with glaucoma. Acta Ophthalmol 97, e772e779 (2019).

    • Search Google Scholar
    • Export Citation
  • 2.

    Tham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., Cheng, C. Y.: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 121, 20812090 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Quigley, H. A., Broman, A. T.: The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90, 262267 (2006).

  • 4.

    Wei, X., Cho, K. S., Thee, E. F., Jager, M. J., Chen, D. F.: Neuroinflammation and microglia in glaucoma: Time for a paradigm shift. J Neurosci Res 97, 7076 (2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Lu, L. J., Tsai, J. C., Liu, J.: Novel pharmacologic candidates for treatment of primary open-angle glaucoma. Yale J Biol Med 90, 111118 (2017).

    • Search Google Scholar
    • Export Citation
  • 6.

    Motlagh, B. F.: Medical therapy versus trabeculectomy in patients with open-angle glaucoma. Arq Bras Oftalmol 79, 233237 (2016).

  • 7.

    Burr, J., Azuara-Blanco, A., Avenell, A., Tuulonen, A.: Medical versus surgical interventions for open angle glaucoma. Cochrane Database Syst Rev 9, CD004399 (2012).

    • Search Google Scholar
    • Export Citation
  • 8.

    Skuta, G. L., Parrish, R. K., 2nd: Wound healing in glaucoma filtering surgery. Surv Ophthalmol 32, 149170 (1987).

  • 9.

    Schwab, I. R., Linberg, J. V., Gioia, V. M., Benson, W. H., Chao, G. M.: Foreshortening of the inferior conjunctival fornix associated with chronic glaucoma medications. Ophthalmology 99, 197202 (1992).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Broadway, D. C., Grierson, I., O’Brien, C., Hitchings, R. A.: Adverse effects of topical antiglaucoma medication. I. The conjunctival cell profile. Arch Ophthalmol 112, 14371445 (1994).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Broadway, D. C., Grierson, I., O’Brien, C., Hitchings, R. A.: Adverse effects of topical antiglaucoma medication. II. The outcome of filtration surgery. Arch Ophthalmol 112, 14461454 (1994).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Collaborative Normal-Tension Glaucoma Study Group: The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol 126, 498505 (1998).

    • Search Google Scholar
    • Export Citation
  • 13.

    Trivli, A., Koliarakis, I., Terzidou, C., Goulielmos, G. N., Siganos, C. S., Spandidos, D. A., Dalianis, G., Detorakis, E. T.: Normal-tension glaucoma: Pathogenesis and genetics. Exp Ther Med 17, 563574 (2019).

    • Search Google Scholar
    • Export Citation
  • 14.

    Lee, J. W., Wong, R. L., Chan, J. C., Wong, I. Y., Lai, J. S.: Differences in corneal parameters between normal tension glaucoma and primary open-angle glaucoma. Int Ophthalmol 35, 6772 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Xu, H., Zhai, R., Zong, Y., Kong, X., Jiang, C., Sun, X., He, Y., Li, X.: Comparison of retinal microvascular changes in eyes with high-tension glaucoma or normal-tension glaucoma: A quantitative optic coherence tomography angiographic study. Graefes Arch Clin Exp Ophthalmol 256, 11791186 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gherghel, D., Hosking, S. L., Cunliffe, I. A.: Abnormal systemic and ocular vascular response to temperature provocation in primary open-angle glaucoma patients: A case for autonomic failure? Invest Ophthalmol Vis Sci 45, 35463554 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kurysheva, N. I., Ryabova, T. Y., Shlapak, V. N.: Heart rate variability: The comparison between high tension and normal tension glaucoma. EPMA J 9, 3545 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lindemann, F., Kuerten, D., Koch, E., Fuest, M., Fischer, C., Voss, A., Plange, N.: Blood pressure and heart rate variability in primary open-angle glaucoma and normal tension glaucoma. Curr Eye Res 43, 15071513 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Cioffi, G. A., Sullivan, P.: The effect of chronic ischemia on the primate optic nerve. Eur J Ophthalmol 9, S34S36 (1999).

  • 20.

    Mozaffarieh, M., Flammer, J.: New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol 13, 4349 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Firat, P. G., Demirel, E. E., Dikci, S., Kuku, I., Genc, O.: Evaluation of iron deficiency anemia frequency as a risk factor in glaucoma. Anemia 2018, 1456323 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Chen, Y. T., Chen, S. N., Liu, C. S.: The relationship between optic atrophy 1 polymorphism and normal tension glaucoma in Taiwan. Taiwan J Ophthalmol 8, 8286 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Danesh-Meyer, H. V., Levin, L. A.: Glaucoma as a neurodegenerative disease. J Neuroophthalmol 35, S22S28 (2015).

  • 24.

    Gupta, N., Yucel, Y. H.: Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol 18, 110114 (2007).

  • 25.

    Spielman, L. J., Gibson, D. L., Klegeris, A.: Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 120, 149163 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Dehhaghi, M., Kazemi Shariat Panahi, H., Guillemin, G. J.: Microorganisms’ footprint in neurodegenerative diseases. Front Cell Neurosci 12, 466 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Baxter, N. T., Schmidt, A. W., Venkataraman, A., Kim, K. S., Waldron, C., Schmidt, T. M.: Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio 10, e02566-18 (2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Thirumangalakudi, L., Prakasam, A., Zhang, R., Bimonte-Nelson, H., Sambamurti, K., Kindy, M. S., Bhat, N. R.: High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106, 475485 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Agarwal, P., Wang, Y., Buchman, A. S., Holland, T. M., Bennett, D. A., Morris, M. C.: MIND diet associated with reduced incidence and delayed progression of Parkinsonism A in old age. J Nutr Health Aging 22, 12111215 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Wlodarek, D.: Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients 11, 169 (2019).

  • 31.

    Sandhu, K. V., Sherwin, E., Schellekens, H., Stanton, C., Dinan, T. G., Cryan, J. F.: Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl Res 179, 223244 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Dumitrescu, L., Popescu-Olaru, I., Cozma, L., Tulba, D., Hinescu, M. E., Ceafalan, L. C., Gherghiceanu, M., Popescu, B. O.: Oxidative stress and the microbiota-gut-brain axis. Oxid Med Cell Longev 2018, 2406594 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hawkes, C. H., Del Tredici, K., Braak, H.: Parkinson’s disease: A dual-hit hypothesis. Neuropathol Appl Neurobiol 33, 599614 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Lin, I. C., Wang, Y. H., Wang, T. J., Wang, I. J., Shen, Y. D., Chi, N. F., Chien, L. N.: Glaucoma, Alzheimer’s disease, and Parkinson’s disease: An 8-year population-based follow-up study. PLoS One 9, e108938 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Giau, V. V., Wu, S. Y., Jamerlan, A., An, S. S. A., Kim, S. Y., Hulme, J.: Gut microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients 10, E1765 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Cui, B., Su, D., Li, W., She, X., Zhang, M., Wang, R., Zhai, Q.: Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: Implications for Alzheimer’s disease. J Neuroinflammation 15, 190 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Peng, W., Yi, P., Yang, J., Xu, P., Wang, Y., Zhang, Z., Huang, S., Wang, Z., Zhang, C.: Association of gut microbiota composition and function with a senescence-accelerated mouse model of Alzheimer’s disease using 16S rRNA gene and metagenomic sequencing analysis. Aging (Albany NY) 10, 40544065 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Kong, Y., Jiang, B., Luo, X.: Gut microbiota influences Alzheimer’s disease pathogenesis by regulating acetate in Drosophila model. Future Microbiol 13, 11171128 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Zhuang, Z. Q., Shen, L. L., Li, W. W., Fu, X., Zeng, F., Gui, L., Lu, Y., Cai, M., Zhu, C., Tan, Y. L., Zheng, P., Li, H. Y., Zhu, J., Zhou, H. D., Bu, X. L., Wang, Y. J.: Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 63, 13371346 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Xu, R., Wang, Q.: Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst Biol 10, 63 (2016).

  • 41.

    Brettschneider, J., Del Tredici, K., Lee, V. M., Trojanowski, J. Q.: Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat Rev Neurosci 16, 109120 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Del Tredici, K., Braak, H.: A not entirely benign procedure: Progression of Parkinson’s disease. Acta Neuropathol 115, 379384 (2008).

  • 43.

    Barichella, M., Severgnini, M., Cilia, R., Cassani, E., Bolliri, C., Caronni, S., Ferri, V., Cancello, R., Ceccarani, C., Faierman, S., Pinelli, G., De Bellis, G., Zecca, L., Cereda, E., Consolandi, C., Pezzoli, G.: Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord 34(3), 396405 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Tan, A. H., Mahadeva, S., Thalha, A. M., Gibson, P. R., Kiew, C. K., Yeat, C. M., Ng, S. W., Ang, S. P., Chow, S. K., Tan, C. T., Yong, H. S., Marras, C., Fox, S. H., Lim, S. Y.: Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord 20, 535540 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Gabrielli, M., Bonazzi, P., Scarpellini, E., Bendia, E., Lauritano, E. C., Fasano, A., Ceravolo, M. G., Capecci, M., Rita Bentivoglio, A., Provinciali, L., Tonali, P. A., Gasbarrini, A.: Prevalence of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 26, 889892 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Keshavarzian, A., Green, S. J., Engen, P. A., Voigt, R. M., Naqib, A., Forsyth, C. B., Mutlu, E., Shannon, K. M.: Colonic bacterial composition in Parkinson’s disease. Mov Disord 30, 13511360 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Perez-Pardo, P., Dodiya, H. B., Engen, P. A., Forsyth, C. B., Huschens, A. M., Shaikh, M., Voigt, R. M., Naqib, A., Green, S. J., Kordower, J. H., Shannon, K. M., Garssen, J., Kraneveld, A. D., Keshavarzian, A.: Role of TLR4 in the gut-brain axis in Parkinson’s disease: A translational study from men to mice. Gut 68, 829843 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Obrenovich, M. E. M.: Leaky gut, leaky brain? Microorganisms 6, 107 (2018).

  • 49.

    Yacyshyn, B., Meddings, J., Sadowski, D., Bowen-Yacyshyn, M. B.: Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Dig Dis Sci 41, 24932498 (1996).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Zhang, R., Miller, R. G., Gascon, R., Champion, S., Katz, J., Lancero, M., Narvaez, A., Honrada, R., Ruvalcaba, D., McGrath, M. S.: Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 206, 121124 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Munoz, L., Borrero, M. J., Ubeda, M., Conde, E., Del Campo, R., Rodriguez-Serrano, M., Lario, M., Sanchez-Diaz, A. M., Pastor, O., Diaz, D., Garcia-Bermejo, L., Monserrat, J., Alvarez-Mon, M., Albillos, A.: Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis. Hepatology 70, 925938 (2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Wada, H.: Blood-brain barrier permeability of the demented elderly as studied by cerebrospinal fluid-serum albumin ratio. Intern Med 37, 509513 (1998).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Berdel, W. E., Okamoto, S.: Ether lipids in cancer chemotherapy. Keio J Med 39, 7578 (1990).

  • 54.

    Shen, Q. X., Xu, G. X., Shen, M. H.: Effect of early enteral nutrition (EN) on endotoxin in serum and intestinal permeability in patients with severe acute pancreatitis. Eur Rev Med Pharmacol Sci 21, 27642768 (2017).

    • Search Google Scholar
    • Export Citation
  • 55.

    Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., Burcelin, R.: Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 14701481 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Metzler-Zebeli, B. U., Siegerstetter, S. C., Magowan, E., Lawlor, P. G., Petri, R. M., Ne, O. C., Zebeli, Q.: Feed restriction modifies intestinal microbiota-host mucosal networking in chickens divergent in residual feed intake. mSystems 4 (2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Chen, L., Li, H., Li, J., Chen, Y., Yang, Y.: Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis. Int J Mol Med 43, 11391148 (2019).

    • Search Google Scholar
    • Export Citation
  • 58.

    Chen, R., Wu, P., Cai, Z., Fang, Y., Zhou, H., Lasanajak, Y., Tang, L., Ye, L., Hou, C., Zhao, J.: Puerariae Lobatae Radix with chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain-gut barriers of dietary capsaicin against chronic low-grade inflammation. J Nutr Biochem 65, 101114 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Wen, X., Hu, X., Miao, L., Ge, X., Deng, Y., Bible, P. W., Wei, L.: Epigenetics, microbiota, and intraocular inflammation: New paradigms of immune regulation in the eye. Prog Retin Eye Res 64, 8495 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Horai, R., Zarate-Blades, C. R., Dillenburg-Pilla, P., Chen, J., Kielczewski, J. L., Silver, P. B., Jittayasothorn, Y., Chan, C. C., Yamane, H., Honda, K., Caspi, R. R.: Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43, 343353 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Nakamura, Y. K., Metea, C., Karstens, L., Asquith, M., Gruner, H., Moscibrocki, C., Lee, I., Brislawn, C. J., Jansson, J. K., Rosenbaum, J. T., Lin, P.: Gut microbial alterations associated with protection from autoimmune Uveitis. Invest Ophthalmol Vis Sci 57, 37473758 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Chen, H., Cho, K. S., Vu, T. H. K., Shen, C. H., Kaur, M., Chen, G., Mathew, R., McHam, M. L., Fazelat, A., Lashkari, K., Au, N. P. B., Tse, J. K. Y., Li, Y., Yu, H., Yang, L., Stein-Streilein, J., Ma, C. H. E., Woolf, C. J., Whary, M. T., Jager, M. J., Fox, J. G., Chen, J., Chen, D. F.: Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 9, 3209 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Benhar, I., London, A., Schwartz, M.: The privileged immunity of immune privileged organs: The case of the eye. Front Immunol 3, 296 (2012).

  • 64.

    Tsay, F. W., Hsu, P. I.: H. pylori infection and extra-gastroduodenal diseases. J Biomed Sci 25, 65 (2018).

  • 65.

    Jaruvongvanich, V., Sanguankeo, A., Jaruvongvanich, S., Upala, S.: Association between Helicobacter pylori infection and multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 7, 9297 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Dardiotis, E., Tsouris, Z., Mentis, A. A., Siokas, V., Michalopoulou, A., Sokratous, M., Dastamani, M., Bogdanos, D. P., Deretzi, G., Kountouras, J.: H. pylori and Parkinson’s disease: Meta-analyses including clinical severity. Clin Neurol Neurosurg 175, 1624 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Fani, L., Wolters, F. J., Ikram, M. K., Bruno, M. J., Hofman, A., Koudstaal, P. J., Darwish Murad, S., Ikram, M. A.: Helicobacter pylori and the risk of dementia: A population-based study. Alzheimers Dement 14, 13771382 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Zeng, J., Liu, H., Liu, X., Ding, C.: The relationship between Helicobacter pylori infection and open-angle glaucoma: A meta-analysis. Invest Ophthalmol Vis Sci 56, 52385245 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Kountouras, J., Mylopoulos, N., Chatzopoulos, D., Zavos, C., Boura, P., Konstas, A. G., Venizelos, J.: Eradication of Helicobacter pylori may be beneficial in the management of chronic open-angle glaucoma. Arch Intern Med 162, 12371244 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Atilgan, C. U., Kosekahya, P., Yozgat, A., Sen, E., Berker, N., Caglayan, M., Sendul, S. Y., Altiparmak, E., Yilmazbas, P.: Are optic nerve heads of patients with Helicobacter pylori infection more susceptible to glaucomatous damage? Helicobacter 22, 16 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Zavos, C., Kountouras, J., Sakkias, G., Venizelos, I., Deretzi, G., Arapoglou, S.: Histological presence of Helicobacter pylori bacteria in the trabeculum and iris of patients with primary open-angle glaucoma. Ophthalmic Res 47, 150156 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Kountouras, J., Mylopoulos, N., Boura, P., Bessas, C., Chatzopoulos, D., Venizelos, J., Zavos, C.: Relationship between Helicobacter pylori infection and glaucoma. Ophthalmology 108, 599604 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Deshpande, N., Lalitha, P., Krishna das, S. R., Jethani, J., Pillai, R. M., Robin, A., Karthik : Helicobacter pylori IgG antibodies in aqueous humor and serum of subjects with primary open angle and pseudo-exfoliation glaucoma in a South Indian population. J Glaucoma 17, 605610 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Kountouras, J., Mylopoulos, N., Konstas, A. G., Zavos, C., Chatzopoulos, D., Boukla, A.: Increased levels of Helicobacter pylori IgG antibodies in aqueous humor of patients with primary open-angle and exfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol 241, 884890 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Chmiela, M., Gonciarz, W.: Molecular mimicry in Helicobacter pylori infections. World J Gastroenterol 23, 39643977 (2017).

  • 76.

    Choi, Y. M., Kim, T. Y., Kim, E. Y., Jang, E. K., Jeon, M. J., Kim, W. G., Shong, Y. K., Kim, W. B.: Association between thyroid autoimmunity and Helicobacter pylori infection. Korean J Intern Med 32, 309313 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Suwarnalata, G., Tan, A. H., Isa, H., Gudimella, R., Anwar, A., Loke, M. F., Mahadeva, S., Lim, S. Y., Vadivelu, J.: Augmentation of autoantibodies by Helicobacter pylori in Parkinson’s disease patients may be linked to greater severity. PLoS One 11, e0153725 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Chen, S., Brown, I. R.: Neuronal expression of constitutive heat shock proteins: Implications for neurodegenerative diseases. Cell Stress Chaperones 12, 5158 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Cao, Y., Gao, L., Tang, R., Zhang, W.: Hsp70 protects human trabecular meshwork cells injury induced by UVB through Smad pathway. Pharmazie 72, 334337 (2017).

    • Search Google Scholar
    • Export Citation
  • 80.

    Magen, E., Delgado, J. S.: Helicobacter pylori and skin autoimmune diseases. World J Gastroenterol 20, 15101516 (2014).

  • 81.

    Tezel, G., Seigel, G. M., Wax, M. B.: Autoantibodies to small heat shock proteins in glaucoma. Invest Ophthalmol Vis Sci 39, 22772287 (1998).

    • Search Google Scholar
    • Export Citation
  • 82.

    Wax, M. B., Tezel, G., Kawase, K., Kitazawa, Y.: Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology 108, 296302 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Joachim, S. C., Bruns, K., Lackner, K. J., Pfeiffer, N., Grus, F. H.: Antibodies to alpha B-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and IgG antibody patterns against retinal antigen in aqueous humor. Curr Eye Res 32, 501509 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Guo, C., Wu, N., Niu, X., Wu, Y., Chen, D., Guo, W.: Comparison of T helper cell patterns in primary open-angle glaucoma and normal-pressure glaucoma. Med Sci Monit 24, 19881996 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Yang, X., Zeng, Q., Goktas, E., Gopal, K., Al-Aswad, L., Blumberg, D. M., Cioffi, G. A., Liebmann, J. M., Tezel, G.: T-lymphocyte subset distribution and activity in patients with glaucoma. Invest Ophthalmol Vis Sci 60, 877888 (2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Wax, M. B., Tezel, G., Yang, J., Peng, G., Patil, R. V., Agarwal, N., Sappington, R. M., Calkins, D. J.: Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci 28, 1208512096 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Joachim, S. C., Wax, M. B., Seidel, P., Pfeiffer, N., Grus, F. H.: Enhanced characterization of serum autoantibody reactivity following HSP 60 immunization in a rat model of experimental autoimmune glaucoma. Curr Eye Res 35, 900908 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Gramlich, O. W., Ding, Q. J., Zhu, W., Cook, A., Anderson, M. G., Kuehn, M. H.: Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol Commun 3, 56 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Poyomtip, T.: Roles of toll-like receptor 4 for cellular pathogenesis in primary open-angle glaucoma: A potential therapeutic strategy. J Microbiol Immunol Infect 52, 201206 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Pachathundikandi, S. K., Lind, J., Tegtmeyer, N., El-Omar, E. M., Backert, S.: Interplay of the gastric pathogen Helicobacter pylori with toll-like receptors. Biomed Res Int 2015, 192420 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Su, B., Ceponis, P. J., Lebel, S., Huynh, H., Sherman, P. M.: Helicobacter pylori activates Toll-like receptor 4 expression in gastrointestinal epithelial cells. Infect Immun 71, 34963502 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Bell, J. S., Spencer, J. I., Yates, R. L., Yee, S. A., Jacobs, B. M., DeLuca, G. C.: Invited review: From nose to gut – The role of the microbiome in neurological disease. Neuropathol Appl Neurobiol 45, 195215 (2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Aguayo, S., Schuh, C., Vicente, B., Aguayo, L. G.: Association between Alzheimer’s disease and oral and gut microbiota: Are pore forming proteins the missing link? J Alzheimers Dis 65, 2946 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Ranjan, R., Abhinay, A., Mishra, M.: Can oral microbial infections be a risk factor for neurodegeneration? A review of the literature. Neurol India 66, 344351 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Dominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., Nguyen, M., Haditsch, U., Raha, D., Griffin, C., Holsinger, L. J., Arastu-Kapur, S., Kaba, S., Lee, A., Ryder, M. I., Potempa, B., Mydel, P., Hellvard, A., Adamowicz, K., Hasturk, H., Walker, G. D., Reynolds, E. C., Faull, R. L. M., Curtis, M. A., Dragunow, M., Potempa, J.: Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5, eaau3333 (2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Astafurov, K., Elhawy, E., Ren, L., Dong, C. Q., Igboin, C., Hyman, L., Griffen, A., Mittag, T., Danias, J.: Oral microbiome link to neurodegeneration in glaucoma. PLoS One 9, e104416 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Polla, D., Astafurov, K., Hawy, E., Hyman, L., Hou, W., Danias, J.: A pilot study to evaluate the oral microbiome and dental health in primary open-angle glaucoma. J Glaucoma 26, 320327 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Agrawal, K., Agrawal, R.: Re: Pasquale et al.: Prospective study of oral health and risk of primary open-angle glaucoma in men: Data from the health professionals follow-up study (Ophthalmology. 2016;123:2318-2327). Ophthalmology 124, e49e50 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Pasquale, L. R., Hyman, L., Wiggs, J. L., Rosner, B. A., Joshipura, K., McEvoy, M., McPherson, Z. E., Danias, J., Kang, J. H.: Prospective study of oral health and risk of primary open-angle glaucoma in men: Data from the health professionals follow-up study. Ophthalmology 123, 23182327 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., Turnbaugh, P. J.: Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559563 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Beilharz, J. E., Kaakoush, N. O., Maniam, J., Morris, M. J.: The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behav Immun 57, 304313 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Daniel, H., Gholami, A. M., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., Mondot, S., Lepage, P., Rothballer, M., Walker, A., Bohm, C., Wenning, M., Wagner, M., Blaut, M., Schmitt-Kopplin, P., Kuster, B., Haller, D., Clavel, T.: High-fat diet alters gut microbiota physiology in mice. ISME J 8, 295308 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Zarnowski, T., Tulidowicz-Bielak, M., Zarnowska, I., Mitosek-Szewczyk, K., Wnorowski, A., Jozwiak, K., Gasior, M., Turski, W. A.: Kynurenic acid and neuroprotective activity of the ketogenic diet in the eye. Curr Med Chem 24, 35473558 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Perez, C. I., Singh, K., Lin, S.: Relationship of lifestyle, exercise, and nutrition with glaucoma. Curr Opin Ophthalmol 30, 8288 (2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Cao, L., Graham, S. L., Pilowsky, P. M.: Carbohydrate ingestion induces differential autonomic dysregulation in normal-tension glaucoma and primary open angle glaucoma. PLoS One 13, e0198432 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Ma, D., Wang, A. C., Parikh, I., Green, S. J., Hoffman, J. D., Chlipala, G., Murphy, M. P., Sokola, B. S., Bauer, B., Hartz, A. M. S., Lin, A. L.: Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 8, 6670 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    Newell, C., Bomhof, M. R., Reimer, R. A., Hittel, D. S., Rho, J. M., Shearer, J.: Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism 7, 37 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Zarnowski, T., Tulidowicz-Bielak, M., Kosior-Jarecka, E., Zarnowska, I., Turski, W. A., Gasior, M.: A ketogenic diet may offer neuroprotection in glaucoma and mitochondrial diseases of the optic nerve. Med Hypothesis Discov Innov Ophthalmol 1, 4549 (2012).

    • Search Google Scholar
    • Export Citation
  • 109.

    Kinouchi, R., Ishiko, S., Hanada, K., Hayashi, H., Mikami, D., Tani, T., Zenimaru, T., Kawai, M., Nakabayashi, S., Kinouchi, M., Yoshida, A.: A low meat diet increases the risk of open-angle glaucoma in women – The results of population-based, cross-sectional study in Japan. PLoS One 13, e0204955 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Wan, M. J., Daniel, S., Kassam, F., Mutti, G., Butty, Z., Kasner, O., Trope, G. E., Buys, Y. M.: Survey of complementary and alternative medicine use in glaucoma patients. J Glaucoma 21, 7982 (2012).

    • Search Google Scholar
    • Export Citation
  • 111.

    Al Owaifeer, A. M., Al Taisan, A. A.: The role of diet in glaucoma: A review of the current evidence. Ophthalmol Ther 7, 1931 (2018).

  • 112.

    Shapiro, A., Shapiro, Y., Udassin, R., Shoenfeld, Y., Konikoff, F.: The effect of salt loading diet on the intraocular pressure. Acta Ophthalmol (Copenh) 60, 3540 (1982).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    Ramdas, W. D., Wolfs, R. C., Kiefte-de Jong, J. C., Hofman, A., de Jong, P. T., Vingerling, J. R., Jansonius, N. M.: Nutrient intake and risk of open-angle glaucoma: The Rotterdam Study. Eur J Epidemiol 27, 385393 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114.

    Giaconi, J. A., Yu, F., Stone, K. L., Pedula, K. L., Ensrud, K. E., Cauley, J. A., Hochberg, M. C., Coleman, A. L., Study of Osteoporotic Fractures Research Group: The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African-American women in the study of osteoporotic fractures. Am J Ophthalmol 154, 635644 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    Coleman, A. L., Stone, K. L., Kodjebacheva, G., Yu, F., Pedula, K. L., Ensrud, K. E., Cauley, J. A., Hochberg, M. C., Topouzis, F., Badala, F., Mangione, C. M., Study of Osteoporotic Fractures Research Group: Glaucoma risk and the consumption of fruits and vegetables among older women in the study of osteoporotic fractures. Am J Ophthalmol 145, 10811089 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Kang, J. H., Willett, W. C., Rosner, B. A., Buys, E., Wiggs, J. L., Pasquale, L. R.: Association of dietary nitrate intake with primary open-angle glaucoma: A prospective analysis from the nurses’ health study and health professionals follow-up study. JAMA Ophthalmol 134, 294303 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 652 EUR / 812 USD
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 86 2 4
Jul 2021 33 0 0
Aug 2021 41 0 0
Sep 2021 52 0 0
Oct 2021 78 0 0
Nov 2021 51 0 0
Dec 2021 18 0 0