In recent years, microbiota-associated neurodegenerative diseases have been exploited and provided new insight into disease pathogenesis. However, primary open-angle glaucoma (POAG), known as a complex neurodegenerative disease resulting from retinal ganglion cell death and optic nerve damage, can cause irreversible blindness and visual field loss. POAG, which shares several similarities with Parkinson’s disease (PD) and Alzheimer’s disease (AD), has limited studies and slow progression in the understanding of pathogenesis when compared to PD and AD. In this review, we summarized the current knowledge of POAG and commensal microbiota, combined with several lines of evidence in PD and AD to propose a possible hypothesis for POAG pathogenesis: microorganisms cause glaucoma via gut–retina axis, resulting in autoantibodies and autoreactive T cells that lead to autoimmunity. Furthermore, dual-hit hypothesis, an example of a commensal pathogen that causes PD, was partially exported in POAG. Finally, future perspectives are suggested to expand understanding of POAG.
Chun, Y. S., Sung, K. R., Park, C. K., Kim, H. K., Yoo, C., Kim, Y. Y., Park, K. H., Kim, C. Y., Choi, K. R., Lee, K. W., Han, S., Kim, C. S., LIGHT (Life Quality of Glaucoma Patients Who Underwent Treatment) Study of the Korean Glaucoma Society: Vision-related quality of life according to location of visual field loss in patients with glaucoma. Acta Ophthalmol 97, e772–e779 (2019).
Tham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., Cheng, C. Y.: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 121, 2081–2090 (2014).
Quigley, H. A., Broman, A. T.: The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90, 262–267 (2006).
Wei, X., Cho, K. S., Thee, E. F., Jager, M. J., Chen, D. F.: Neuroinflammation and microglia in glaucoma: Time for a paradigm shift. J Neurosci Res 97, 70–76 (2019).
Lu, L. J., Tsai, J. C., Liu, J.: Novel pharmacologic candidates for treatment of primary open-angle glaucoma. Yale J Biol Med 90, 111–118 (2017).
Motlagh, B. F.: Medical therapy versus trabeculectomy in patients with open-angle glaucoma. Arq Bras Oftalmol 79, 233–237 (2016).
Burr, J., Azuara-Blanco, A., Avenell, A., Tuulonen, A.: Medical versus surgical interventions for open angle glaucoma. Cochrane Database Syst Rev 9, CD004399 (2012).
Skuta, G. L., Parrish, R. K., 2nd: Wound healing in glaucoma filtering surgery. Surv Ophthalmol 32, 149–170 (1987).
Schwab, I. R., Linberg, J. V., Gioia, V. M., Benson, W. H., Chao, G. M.: Foreshortening of the inferior conjunctival fornix associated with chronic glaucoma medications. Ophthalmology 99, 197–202 (1992).
Broadway, D. C., Grierson, I., O’Brien, C., Hitchings, R. A.: Adverse effects of topical antiglaucoma medication. I. The conjunctival cell profile. Arch Ophthalmol 112, 1437–1445 (1994).
Broadway, D. C., Grierson, I., O’Brien, C., Hitchings, R. A.: Adverse effects of topical antiglaucoma medication. II. The outcome of filtration surgery. Arch Ophthalmol 112, 1446–1454 (1994).
Collaborative Normal-Tension Glaucoma Study Group: The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol 126, 498–505 (1998).
Trivli, A., Koliarakis, I., Terzidou, C., Goulielmos, G. N., Siganos, C. S., Spandidos, D. A., Dalianis, G., Detorakis, E. T.: Normal-tension glaucoma: Pathogenesis and genetics. Exp Ther Med 17, 563–574 (2019).
Lee, J. W., Wong, R. L., Chan, J. C., Wong, I. Y., Lai, J. S.: Differences in corneal parameters between normal tension glaucoma and primary open-angle glaucoma. Int Ophthalmol 35, 67–72 (2015).
Xu, H., Zhai, R., Zong, Y., Kong, X., Jiang, C., Sun, X., He, Y., Li, X.: Comparison of retinal microvascular changes in eyes with high-tension glaucoma or normal-tension glaucoma: A quantitative optic coherence tomography angiographic study. Graefes Arch Clin Exp Ophthalmol 256, 1179–1186 (2018).
Gherghel, D., Hosking, S. L., Cunliffe, I. A.: Abnormal systemic and ocular vascular response to temperature provocation in primary open-angle glaucoma patients: A case for autonomic failure? Invest Ophthalmol Vis Sci 45, 3546–3554 (2004).
Kurysheva, N. I., Ryabova, T. Y., Shlapak, V. N.: Heart rate variability: The comparison between high tension and normal tension glaucoma. EPMA J 9, 35–45 (2018).
Lindemann, F., Kuerten, D., Koch, E., Fuest, M., Fischer, C., Voss, A., Plange, N.: Blood pressure and heart rate variability in primary open-angle glaucoma and normal tension glaucoma. Curr Eye Res 43, 1507–1513 (2018).
Cioffi, G. A., Sullivan, P.: The effect of chronic ischemia on the primate optic nerve. Eur J Ophthalmol 9, S34–S36 (1999).
Mozaffarieh, M., Flammer, J.: New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol 13, 43–49 (2013).
Firat, P. G., Demirel, E. E., Dikci, S., Kuku, I., Genc, O.: Evaluation of iron deficiency anemia frequency as a risk factor in glaucoma. Anemia 2018, 1456323 (2018).
Chen, Y. T., Chen, S. N., Liu, C. S.: The relationship between optic atrophy 1 polymorphism and normal tension glaucoma in Taiwan. Taiwan J Ophthalmol 8, 82–86 (2018).
Danesh-Meyer, H. V., Levin, L. A.: Glaucoma as a neurodegenerative disease. J Neuroophthalmol 35, S22–S28 (2015).
Gupta, N., Yucel, Y. H.: Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol 18, 110–114 (2007).
Spielman, L. J., Gibson, D. L., Klegeris, A.: Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 120, 149–163 (2018).
Dehhaghi, M., Kazemi Shariat Panahi, H., Guillemin, G. J.: Microorganisms’ footprint in neurodegenerative diseases. Front Cell Neurosci 12, 466 (2018).
Baxter, N. T., Schmidt, A. W., Venkataraman, A., Kim, K. S., Waldron, C., Schmidt, T. M.: Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio 10, e02566-18 (2019).
Thirumangalakudi, L., Prakasam, A., Zhang, R., Bimonte-Nelson, H., Sambamurti, K., Kindy, M. S., Bhat, N. R.: High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106, 475–485 (2008).
Agarwal, P., Wang, Y., Buchman, A. S., Holland, T. M., Bennett, D. A., Morris, M. C.: MIND diet associated with reduced incidence and delayed progression of Parkinsonism A in old age. J Nutr Health Aging 22, 1211–1215 (2018).
Wlodarek, D.: Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients 11, 169 (2019).
Sandhu, K. V., Sherwin, E., Schellekens, H., Stanton, C., Dinan, T. G., Cryan, J. F.: Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl Res 179, 223–244 (2017).
Dumitrescu, L., Popescu-Olaru, I., Cozma, L., Tulba, D., Hinescu, M. E., Ceafalan, L. C., Gherghiceanu, M., Popescu, B. O.: Oxidative stress and the microbiota-gut-brain axis. Oxid Med Cell Longev 2018, 2406594 (2018).
Hawkes, C. H., Del Tredici, K., Braak, H.: Parkinson’s disease: A dual-hit hypothesis. Neuropathol Appl Neurobiol 33, 599–614 (2007).
Lin, I. C., Wang, Y. H., Wang, T. J., Wang, I. J., Shen, Y. D., Chi, N. F., Chien, L. N.: Glaucoma, Alzheimer’s disease, and Parkinson’s disease: An 8-year population-based follow-up study. PLoS One 9, e108938 (2014).
Giau, V. V., Wu, S. Y., Jamerlan, A., An, S. S. A., Kim, S. Y., Hulme, J.: Gut microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients 10, E1765 (2018).
Cui, B., Su, D., Li, W., She, X., Zhang, M., Wang, R., Zhai, Q.: Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: Implications for Alzheimer’s disease. J Neuroinflammation 15, 190 (2018).
Peng, W., Yi, P., Yang, J., Xu, P., Wang, Y., Zhang, Z., Huang, S., Wang, Z., Zhang, C.: Association of gut microbiota composition and function with a senescence-accelerated mouse model of Alzheimer’s disease using 16S rRNA gene and metagenomic sequencing analysis. Aging (Albany NY) 10, 4054–4065 (2018).
Kong, Y., Jiang, B., Luo, X.: Gut microbiota influences Alzheimer’s disease pathogenesis by regulating acetate in Drosophila model. Future Microbiol 13, 1117–1128 (2018).
Zhuang, Z. Q., Shen, L. L., Li, W. W., Fu, X., Zeng, F., Gui, L., Lu, Y., Cai, M., Zhu, C., Tan, Y. L., Zheng, P., Li, H. Y., Zhu, J., Zhou, H. D., Bu, X. L., Wang, Y. J.: Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 63, 1337–1346 (2018).
Xu, R., Wang, Q.: Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst Biol 10, 63 (2016).
Brettschneider, J., Del Tredici, K., Lee, V. M., Trojanowski, J. Q.: Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat Rev Neurosci 16, 109–120 (2015).
Del Tredici, K., Braak, H.: A not entirely benign procedure: Progression of Parkinson’s disease. Acta Neuropathol 115, 379–384 (2008).
Barichella, M., Severgnini, M., Cilia, R., Cassani, E., Bolliri, C., Caronni, S., Ferri, V., Cancello, R., Ceccarani, C., Faierman, S., Pinelli, G., De Bellis, G., Zecca, L., Cereda, E., Consolandi, C., Pezzoli, G.: Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord 34(3), 396–405 (2018).
Tan, A. H., Mahadeva, S., Thalha, A. M., Gibson, P. R., Kiew, C. K., Yeat, C. M., Ng, S. W., Ang, S. P., Chow, S. K., Tan, C. T., Yong, H. S., Marras, C., Fox, S. H., Lim, S. Y.: Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord 20, 535–540 (2014).
Gabrielli, M., Bonazzi, P., Scarpellini, E., Bendia, E., Lauritano, E. C., Fasano, A., Ceravolo, M. G., Capecci, M., Rita Bentivoglio, A., Provinciali, L., Tonali, P. A., Gasbarrini, A.: Prevalence of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 26, 889–892 (2011).
Keshavarzian, A., Green, S. J., Engen, P. A., Voigt, R. M., Naqib, A., Forsyth, C. B., Mutlu, E., Shannon, K. M.: Colonic bacterial composition in Parkinson’s disease. Mov Disord 30, 1351–1360 (2015).
Perez-Pardo, P., Dodiya, H. B., Engen, P. A., Forsyth, C. B., Huschens, A. M., Shaikh, M., Voigt, R. M., Naqib, A., Green, S. J., Kordower, J. H., Shannon, K. M., Garssen, J., Kraneveld, A. D., Keshavarzian, A.: Role of TLR4 in the gut-brain axis in Parkinson’s disease: A translational study from men to mice. Gut 68, 829–843 (2018).
Obrenovich, M. E. M.: Leaky gut, leaky brain? Microorganisms 6, 107 (2018).
Yacyshyn, B., Meddings, J., Sadowski, D., Bowen-Yacyshyn, M. B.: Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Dig Dis Sci 41, 2493–2498 (1996).
Zhang, R., Miller, R. G., Gascon, R., Champion, S., Katz, J., Lancero, M., Narvaez, A., Honrada, R., Ruvalcaba, D., McGrath, M. S.: Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 206, 121–124 (2009).
Munoz, L., Borrero, M. J., Ubeda, M., Conde, E., Del Campo, R., Rodriguez-Serrano, M., Lario, M., Sanchez-Diaz, A. M., Pastor, O., Diaz, D., Garcia-Bermejo, L., Monserrat, J., Alvarez-Mon, M., Albillos, A.: Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis. Hepatology 70, 925–938 (2019).
Wada, H.: Blood-brain barrier permeability of the demented elderly as studied by cerebrospinal fluid-serum albumin ratio. Intern Med 37, 509–513 (1998).
Berdel, W. E., Okamoto, S.: Ether lipids in cancer chemotherapy. Keio J Med 39, 75–78 (1990).
Shen, Q. X., Xu, G. X., Shen, M. H.: Effect of early enteral nutrition (EN) on endotoxin in serum and intestinal permeability in patients with severe acute pancreatitis. Eur Rev Med Pharmacol Sci 21, 2764–2768 (2017).
Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., Burcelin, R.: Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).
Metzler-Zebeli, B. U., Siegerstetter, S. C., Magowan, E., Lawlor, P. G., Petri, R. M., Ne, O. C., Zebeli, Q.: Feed restriction modifies intestinal microbiota-host mucosal networking in chickens divergent in residual feed intake. mSystems 4 (2019).
Chen, L., Li, H., Li, J., Chen, Y., Yang, Y.: Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis. Int J Mol Med 43, 1139–1148 (2019).
Chen, R., Wu, P., Cai, Z., Fang, Y., Zhou, H., Lasanajak, Y., Tang, L., Ye, L., Hou, C., Zhao, J.: Puerariae Lobatae Radix with chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain-gut barriers of dietary capsaicin against chronic low-grade inflammation. J Nutr Biochem 65, 101–114 (2018).
Wen, X., Hu, X., Miao, L., Ge, X., Deng, Y., Bible, P. W., Wei, L.: Epigenetics, microbiota, and intraocular inflammation: New paradigms of immune regulation in the eye. Prog Retin Eye Res 64, 84–95 (2018).
Horai, R., Zarate-Blades, C. R., Dillenburg-Pilla, P., Chen, J., Kielczewski, J. L., Silver, P. B., Jittayasothorn, Y., Chan, C. C., Yamane, H., Honda, K., Caspi, R. R.: Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43, 343–353 (2015).
Nakamura, Y. K., Metea, C., Karstens, L., Asquith, M., Gruner, H., Moscibrocki, C., Lee, I., Brislawn, C. J., Jansson, J. K., Rosenbaum, J. T., Lin, P.: Gut microbial alterations associated with protection from autoimmune Uveitis. Invest Ophthalmol Vis Sci 57, 3747–3758 (2016).
Chen, H., Cho, K. S., Vu, T. H. K., Shen, C. H., Kaur, M., Chen, G., Mathew, R., McHam, M. L., Fazelat, A., Lashkari, K., Au, N. P. B., Tse, J. K. Y., Li, Y., Yu, H., Yang, L., Stein-Streilein, J., Ma, C. H. E., Woolf, C. J., Whary, M. T., Jager, M. J., Fox, J. G., Chen, J., Chen, D. F.: Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 9, 3209 (2018).
Benhar, I., London, A., Schwartz, M.: The privileged immunity of immune privileged organs: The case of the eye. Front Immunol 3, 296 (2012).
Tsay, F. W., Hsu, P. I.: H. pylori infection and extra-gastroduodenal diseases. J Biomed Sci 25, 65 (2018).
Jaruvongvanich, V., Sanguankeo, A., Jaruvongvanich, S., Upala, S.: Association between Helicobacter pylori infection and multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 7, 92–97 (2016).
Dardiotis, E., Tsouris, Z., Mentis, A. A., Siokas, V., Michalopoulou, A., Sokratous, M., Dastamani, M., Bogdanos, D. P., Deretzi, G., Kountouras, J.: H. pylori and Parkinson’s disease: Meta-analyses including clinical severity. Clin Neurol Neurosurg 175, 16–24 (2018).
Fani, L., Wolters, F. J., Ikram, M. K., Bruno, M. J., Hofman, A., Koudstaal, P. J., Darwish Murad, S., Ikram, M. A.: Helicobacter pylori and the risk of dementia: A population-based study. Alzheimers Dement 14, 1377–1382 (2018).
Zeng, J., Liu, H., Liu, X., Ding, C.: The relationship between Helicobacter pylori infection and open-angle glaucoma: A meta-analysis. Invest Ophthalmol Vis Sci 56, 5238–5245 (2015).
Kountouras, J., Mylopoulos, N., Chatzopoulos, D., Zavos, C., Boura, P., Konstas, A. G., Venizelos, J.: Eradication of Helicobacter pylori may be beneficial in the management of chronic open-angle glaucoma. Arch Intern Med 162, 1237–1244 (2002).
Atilgan, C. U., Kosekahya, P., Yozgat, A., Sen, E., Berker, N., Caglayan, M., Sendul, S. Y., Altiparmak, E., Yilmazbas, P.: Are optic nerve heads of patients with Helicobacter pylori infection more susceptible to glaucomatous damage? Helicobacter 22, 1–6 (2017).
Zavos, C., Kountouras, J., Sakkias, G., Venizelos, I., Deretzi, G., Arapoglou, S.: Histological presence of Helicobacter pylori bacteria in the trabeculum and iris of patients with primary open-angle glaucoma. Ophthalmic Res 47, 150–156 (2012).
Kountouras, J., Mylopoulos, N., Boura, P., Bessas, C., Chatzopoulos, D., Venizelos, J., Zavos, C.: Relationship between Helicobacter pylori infection and glaucoma. Ophthalmology 108, 599–604 (2001).
Deshpande, N., Lalitha, P., Krishna das, S. R., Jethani, J., Pillai, R. M., Robin, A., Karthik : Helicobacter pylori IgG antibodies in aqueous humor and serum of subjects with primary open angle and pseudo-exfoliation glaucoma in a South Indian population. J Glaucoma 17, 605–610 (2008).
Kountouras, J., Mylopoulos, N., Konstas, A. G., Zavos, C., Chatzopoulos, D., Boukla, A.: Increased levels of Helicobacter pylori IgG antibodies in aqueous humor of patients with primary open-angle and exfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol 241, 884–890 (2003).
Chmiela, M., Gonciarz, W.: Molecular mimicry in Helicobacter pylori infections. World J Gastroenterol 23, 3964–3977 (2017).
Choi, Y. M., Kim, T. Y., Kim, E. Y., Jang, E. K., Jeon, M. J., Kim, W. G., Shong, Y. K., Kim, W. B.: Association between thyroid autoimmunity and Helicobacter pylori infection. Korean J Intern Med 32, 309–313 (2017).
Suwarnalata, G., Tan, A. H., Isa, H., Gudimella, R., Anwar, A., Loke, M. F., Mahadeva, S., Lim, S. Y., Vadivelu, J.: Augmentation of autoantibodies by Helicobacter pylori in Parkinson’s disease patients may be linked to greater severity. PLoS One 11, e0153725 (2016).
Chen, S., Brown, I. R.: Neuronal expression of constitutive heat shock proteins: Implications for neurodegenerative diseases. Cell Stress Chaperones 12, 51–58 (2007).
Cao, Y., Gao, L., Tang, R., Zhang, W.: Hsp70 protects human trabecular meshwork cells injury induced by UVB through Smad pathway. Pharmazie 72, 334–337 (2017).
Magen, E., Delgado, J. S.: Helicobacter pylori and skin autoimmune diseases. World J Gastroenterol 20, 1510–1516 (2014).
Tezel, G., Seigel, G. M., Wax, M. B.: Autoantibodies to small heat shock proteins in glaucoma. Invest Ophthalmol Vis Sci 39, 2277–2287 (1998).
Wax, M. B., Tezel, G., Kawase, K., Kitazawa, Y.: Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology 108, 296–302 (2001).
Joachim, S. C., Bruns, K., Lackner, K. J., Pfeiffer, N., Grus, F. H.: Antibodies to alpha B-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and IgG antibody patterns against retinal antigen in aqueous humor. Curr Eye Res 32, 501–509 (2007).
Guo, C., Wu, N., Niu, X., Wu, Y., Chen, D., Guo, W.: Comparison of T helper cell patterns in primary open-angle glaucoma and normal-pressure glaucoma. Med Sci Monit 24, 1988–1996 (2018).
Yang, X., Zeng, Q., Goktas, E., Gopal, K., Al-Aswad, L., Blumberg, D. M., Cioffi, G. A., Liebmann, J. M., Tezel, G.: T-lymphocyte subset distribution and activity in patients with glaucoma. Invest Ophthalmol Vis Sci 60, 877–888 (2019).
Wax, M. B., Tezel, G., Yang, J., Peng, G., Patil, R. V., Agarwal, N., Sappington, R. M., Calkins, D. J.: Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci 28, 12085–12096 (2008).
Joachim, S. C., Wax, M. B., Seidel, P., Pfeiffer, N., Grus, F. H.: Enhanced characterization of serum autoantibody reactivity following HSP 60 immunization in a rat model of experimental autoimmune glaucoma. Curr Eye Res 35, 900–908 (2010).
Gramlich, O. W., Ding, Q. J., Zhu, W., Cook, A., Anderson, M. G., Kuehn, M. H.: Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol Commun 3, 56 (2015).
Poyomtip, T.: Roles of toll-like receptor 4 for cellular pathogenesis in primary open-angle glaucoma: A potential therapeutic strategy. J Microbiol Immunol Infect 52, 201–206 (2018).
Pachathundikandi, S. K., Lind, J., Tegtmeyer, N., El-Omar, E. M., Backert, S.: Interplay of the gastric pathogen Helicobacter pylori with toll-like receptors. Biomed Res Int 2015, 192420 (2015).
Su, B., Ceponis, P. J., Lebel, S., Huynh, H., Sherman, P. M.: Helicobacter pylori activates Toll-like receptor 4 expression in gastrointestinal epithelial cells. Infect Immun 71, 3496–3502 (2003).
Bell, J. S., Spencer, J. I., Yates, R. L., Yee, S. A., Jacobs, B. M., DeLuca, G. C.: Invited review: From nose to gut – The role of the microbiome in neurological disease. Neuropathol Appl Neurobiol 45, 195–215 (2019).
Aguayo, S., Schuh, C., Vicente, B., Aguayo, L. G.: Association between Alzheimer’s disease and oral and gut microbiota: Are pore forming proteins the missing link? J Alzheimers Dis 65, 29–46 (2018).
Ranjan, R., Abhinay, A., Mishra, M.: Can oral microbial infections be a risk factor for neurodegeneration? A review of the literature. Neurol India 66, 344–351 (2018).
Dominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., Nguyen, M., Haditsch, U., Raha, D., Griffin, C., Holsinger, L. J., Arastu-Kapur, S., Kaba, S., Lee, A., Ryder, M. I., Potempa, B., Mydel, P., Hellvard, A., Adamowicz, K., Hasturk, H., Walker, G. D., Reynolds, E. C., Faull, R. L. M., Curtis, M. A., Dragunow, M., Potempa, J.: Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5, eaau3333 (2019).
Astafurov, K., Elhawy, E., Ren, L., Dong, C. Q., Igboin, C., Hyman, L., Griffen, A., Mittag, T., Danias, J.: Oral microbiome link to neurodegeneration in glaucoma. PLoS One 9, e104416 (2014).
Polla, D., Astafurov, K., Hawy, E., Hyman, L., Hou, W., Danias, J.: A pilot study to evaluate the oral microbiome and dental health in primary open-angle glaucoma. J Glaucoma 26, 320–327 (2017).
Agrawal, K., Agrawal, R.: Re: Pasquale et al.: Prospective study of oral health and risk of primary open-angle glaucoma in men: Data from the health professionals follow-up study (Ophthalmology. 2016;123:2318-2327). Ophthalmology 124, e49–e50 (2017).
Pasquale, L. R., Hyman, L., Wiggs, J. L., Rosner, B. A., Joshipura, K., McEvoy, M., McPherson, Z. E., Danias, J., Kang, J. H.: Prospective study of oral health and risk of primary open-angle glaucoma in men: Data from the health professionals follow-up study. Ophthalmology 123, 2318–2327 (2016).
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., Turnbaugh, P. J.: Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
Beilharz, J. E., Kaakoush, N. O., Maniam, J., Morris, M. J.: The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behav Immun 57, 304–313 (2016).
Daniel, H., Gholami, A. M., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., Mondot, S., Lepage, P., Rothballer, M., Walker, A., Bohm, C., Wenning, M., Wagner, M., Blaut, M., Schmitt-Kopplin, P., Kuster, B., Haller, D., Clavel, T.: High-fat diet alters gut microbiota physiology in mice. ISME J 8, 295–308 (2014).
Zarnowski, T., Tulidowicz-Bielak, M., Zarnowska, I., Mitosek-Szewczyk, K., Wnorowski, A., Jozwiak, K., Gasior, M., Turski, W. A.: Kynurenic acid and neuroprotective activity of the ketogenic diet in the eye. Curr Med Chem 24, 3547–3558 (2017).
Perez, C. I., Singh, K., Lin, S.: Relationship of lifestyle, exercise, and nutrition with glaucoma. Curr Opin Ophthalmol 30, 82–88 (2019).
Cao, L., Graham, S. L., Pilowsky, P. M.: Carbohydrate ingestion induces differential autonomic dysregulation in normal-tension glaucoma and primary open angle glaucoma. PLoS One 13, e0198432 (2018).
Ma, D., Wang, A. C., Parikh, I., Green, S. J., Hoffman, J. D., Chlipala, G., Murphy, M. P., Sokola, B. S., Bauer, B., Hartz, A. M. S., Lin, A. L.: Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 8, 6670 (2018).
Newell, C., Bomhof, M. R., Reimer, R. A., Hittel, D. S., Rho, J. M., Shearer, J.: Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism 7, 37 (2016).
Zarnowski, T., Tulidowicz-Bielak, M., Kosior-Jarecka, E., Zarnowska, I., Turski, W. A., Gasior, M.: A ketogenic diet may offer neuroprotection in glaucoma and mitochondrial diseases of the optic nerve. Med Hypothesis Discov Innov Ophthalmol 1, 45–49 (2012).
Kinouchi, R., Ishiko, S., Hanada, K., Hayashi, H., Mikami, D., Tani, T., Zenimaru, T., Kawai, M., Nakabayashi, S., Kinouchi, M., Yoshida, A.: A low meat diet increases the risk of open-angle glaucoma in women – The results of population-based, cross-sectional study in Japan. PLoS One 13, e0204955 (2018).
Wan, M. J., Daniel, S., Kassam, F., Mutti, G., Butty, Z., Kasner, O., Trope, G. E., Buys, Y. M.: Survey of complementary and alternative medicine use in glaucoma patients. J Glaucoma 21, 79–82 (2012).
Al Owaifeer, A. M., Al Taisan, A. A.: The role of diet in glaucoma: A review of the current evidence. Ophthalmol Ther 7, 19–31 (2018).
Shapiro, A., Shapiro, Y., Udassin, R., Shoenfeld, Y., Konikoff, F.: The effect of salt loading diet on the intraocular pressure. Acta Ophthalmol (Copenh) 60, 35–40 (1982).
Ramdas, W. D., Wolfs, R. C., Kiefte-de Jong, J. C., Hofman, A., de Jong, P. T., Vingerling, J. R., Jansonius, N. M.: Nutrient intake and risk of open-angle glaucoma: The Rotterdam Study. Eur J Epidemiol 27, 385–393 (2012).
Giaconi, J. A., Yu, F., Stone, K. L., Pedula, K. L., Ensrud, K. E., Cauley, J. A., Hochberg, M. C., Coleman, A. L., Study of Osteoporotic Fractures Research Group: The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African-American women in the study of osteoporotic fractures. Am J Ophthalmol 154, 635–644 (2012).
Coleman, A. L., Stone, K. L., Kodjebacheva, G., Yu, F., Pedula, K. L., Ensrud, K. E., Cauley, J. A., Hochberg, M. C., Topouzis, F., Badala, F., Mangione, C. M., Study of Osteoporotic Fractures Research Group: Glaucoma risk and the consumption of fruits and vegetables among older women in the study of osteoporotic fractures. Am J Ophthalmol 145, 1081–1089 (2008).
Kang, J. H., Willett, W. C., Rosner, B. A., Buys, E., Wiggs, J. L., Pasquale, L. R.: Association of dietary nitrate intake with primary open-angle glaucoma: A prospective analysis from the nurses’ health study and health professionals follow-up study. JAMA Ophthalmol 134, 294–303 (2016).