Clostridioides (formerly Clostridium) difficile infections (CDIs) are becoming more common and more serious. C. difficile is the etiologic agent of antibiotic-associated diarrhea, pseudomembranous enterocolitis, and toxic megacolon while CDIs recur in 7.9% of patients. About 42.9 CDI cases/10,000 patient-days are diagnosed each day in Europe, whereas in Poland 5.6 CDI cases/10,000 patient-days are reported; however, the median for European countries is 2.9 CDI cases/10,000 patient-days. Epidemiology of CDIs has changed in recent years and risk of developing the disease has doubled in the past decade that is largely determined by use of antibiotics. Studies show that rate of antibiotic consumption in the non-hospital sector in Poland is much higher than the European average (27 vs. 21.8 DDD/1,000 patient-days), and this value has increased in recent years. Antibiotic consumption has also increased in the hospital sector, especially in the intensive care units – 1,520 DDD/1,000 patient-days (ranging from 620 to 3,960 DDD/1,000 patient-days) – and was significantly higher than in Germany 1,305 (ranging from 463 to 2,216 DDD/1,000 patient-days) or in Sweden 1,147 (ranging from 605 to 2,134 DDD/1,000 patient-days). The recent rise in CDI incidence has prompted a search for alternative treatments. Great hope is placed in probiotics, bacteriocins, monoclonal antibodies, bacteriophages, and developing new vaccines.
Murphy, C., Veron, M., Cullen, M.: Intravenous immunoglobulin for resistant Clostridium difficile infection. Age Ageing 35, 85–86 (2006).
Hall, I. C., O’Toole, E.: Intestinal flora in newborn infants with a description of a new pathogenic anaerobe, Bacilus difficilis. Am J Dis Child 49, 390–402 (1935).
Aslam, S., Hamill, R. J., Musher, D. M.: Treatment of Clostridium difficile-associated disease: Old therapies and new strategies. Lancet Infect Dis 5, 549–557 (2005).
Pituch, H., Albrecht, P.: Clostridium difficile – narastający problem diagnostyczny i terapeutyczny [Clostridium difficile – A growing diagnostic and therapeutic problem]. Gastroenterol Klin 5, 40–51 (2013).
Zanella Terrier, M. C., Simonet, M. L., Bichard, P., Frossard, J. L.: Recurrent Clostridium difficile infections: The importance of the intestinal microbiota. World J Gastroenterol 20, 7416–7423 (2014).
Kelly, C. P.: Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin Microbiol Infect 18, 21–27 (2012).
European Centre for Disease Prevention and Control. Clostridium difficile Infections Annual Epidemiological Report for 2016. ECDC, Stockholm, 2018. Available at https://ecdc.europa.eu/sites/portal/files/documents/AER_for_2016-C-difficile_0.pdf
Naaber, P., Smidt, I., Stsepetova, J., Brilene, T., Annuk, H., Mikelsaar, M.: Inhibition of Clostridium difficile strains by in intestinal Lactobacillus species. J Med Microbiol 53, 551–554 (2004).
Deshpande, A., Pasupuleti, V., Thota, P., Pant, C., Rolston, D. D., Sferra, T. J., Hernandez, A. V., Donskey, C. J.: Community-associated Clostridium difficile infection and antibiotics: A meta-analysis. J Antimicrob Chemother 68, 1951–1961 (2013).
Jenberg, C., Löfmark, S., Edlund, C., Jansson, J. K.: Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1, 56–66 (2007).
Furuya-Kanamori, L., Stone, J. C., Clark, J., McKenzie, S. J., Yakob, L., Paterson, D. L., Riley, T. V., Doi, S. A., Clements, A. C.: Comorbidities, exposure to medications, and the risk of community-acquired Clostridium difficile infection: A systematic review and meta-analysis. Infect Control Hosp Epidemiol 36, 132–41 (2015).
McDonald, L. C., Gerding, D. N., Johnson, S., Bakken, J. S., Carroll, K. C., Coffin, S. E., Dubberke, E. R., Garey, K. W., Gould, C. V., Kelly, C., Loo, V., Sammons, J. S., Sandora, T. J., Wilcox, M. H.: Clinical practice guidelines for Clostridium difficile infections in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 66, e1–e48 (2018).
Lucado, J., Gould, C., Elixhauser, A.: Clostridium difficile Infections (CDI) in Hospital Stays, 2009: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville, MD: Agency for Health Care Policy and Research (US), 2012. Available at https://www.ncbi.nlm.nih.gov/books/NBK92613/
Centers for Disease Control and Prevention (CDC): Severe Clostridium difficile-associated disease in populations previously at low risk: Four states, 2005. Morb Mortal Wkly Rep 54, 1201–1205 (2005).
Lessa, C. F., Mu, Y., Bamberg, W. M., Beldavs, Z. G., Dumyati, G. K., Dunn, J. R., Farley, M. M., Holzbauer, S. M., Meek, I. J., Phipps, C. E., Wilson, E. L., Winston, G. L., Cohen, A. J., Limbago, M. B., Fridkin, K. S., Gerding, N. D., Clifford, L., McDonald, C. L.: Burden of Clostridium difficile infection in the United States. N Engl J Med 372, 825–834 (2015).
Pituch, H., Obuch-Woszczatyński, P., Lachowicz, D., Kuthan, R., Dzierżanowska-Fangrat, K., Mikucka, A., Jermakow, K., Pituch-Zdanowska, A., Davies, K.: Prevalence of Clostridium difficile infection in hospitalized patients with diarrhoea: Results of a Polish multicenter, prospective, biannual point-prevalence study. Adv Med Sci 63, 290–295 (2018).
Kołpa, M., Wałaszek, M., Różańska, A., Wolak, Z., Wójkowska-Mach, J.: Hospital-wide surveillance of healthcare-associated infections as a source of information about specific hospital needs. A 5-year observation in a multiprofile provincial hospital in the south of Poland. Int J Environ Res Public Health 15, E1956 (2018).
Ziółkowski, G., Pawłowska, I., Krawczyk, L., Wójkowska-Mach, J.: Antibiotic consumption versus the prevalence of multidrug-resistant Acinetobacter baumannii and Clostridium difficile infections at an ICU from 2014–2015. J Infect Public Health 11, 626–630 (2018).
Pituch, H., Obuch-Woszczatyński, P., Lachowicz, D., Wultańska, D., Karpiński, P., Młynarczyk, G., van Dorp, S. M., Kuijper, E. J.: Polish Clostridium difficile study group: hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Euro Surveill 20, 38 (2015).
Pituch, H., Bakker, D., Kuijper, E., Obuch-Woszczatyński, P., Wultańska, D., Nurzyńska, G., Bielec, A., Bar-Andziak, E., Łuczak, M.: First isolation of Clostridium difficile PCR-ribotype 027/toxinotype III in Poland. Pol J Microbiol 57, 267–268 (2008).
Pituch, H., Obuch-Woszczatyński, P., Lachowicz, D., Wultańska, D., Karpiński, P., Młynarczyk, G., van Dorp, S. M., Kuijper, E. J.: Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Euro Surveill 20, 38 (2015).
Aptekorz, M., Szczegielniak, A., Wiechuła, B., Harmanus, C., Kuijper, E., Martirosian, G.: Occurrence of Clostridium difficile ribotype 027 in hospitals of Silesia, Poland. Anaerobe 45, 106–113 (2017).
Czepiel, J., Kędzierska, J., Biesiada, G., Birczyńska, M., Perucki, W., Nowak, P., Garlicki, A.: Epidemiology of Clostridium difficile infection: Results of a hospital-based study in Krakow, Poland. Epidemiol Infect 143, 3235–3243 (2015).
Barlam, T. F., Cosgrove, S. E., Abbo, L. M., MacDougall, C., Schuetz, A. N., Septimus, E. J., Srinivasan, A., Dellit, T. H., Falck-Ytter, Y. T., Fishman, N. O., Hamilton, C. W., Jenkins, T. C., Lipsett, P. A., Malani, P. N., May, L. S., Moran, G. J., Neuhauser, M. M., Newland, J. G., Ohl, C. A., Samore, M. H., Seo, S. K., Trivedi, K. K.: Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62, 51–77 (2016).
Wojkowska-Mach, J., Godman, B., Glassman, A., Kurdi, A., Pilc, A., Rozanska, A., Skoczyński, S., Wałaszek, M., Bochenek, T.: Antibiotic consumption and antimicrobial resistance in Poland; findings and implications. Antimicrob Resist Infect Control 7, 136 (2018).
Hanberger, H., Erlandsson, M., Burman, L. G., Cars, O., Gill, H., Lindgren, S., Nilsson, L. E., Olsson-Liljequist, B., Walther, S.: High antibiotic susceptibility among bacterial pathogens in Swedish ICUs. Report from a nationwide surveillance program using TA90 as a novel index of susceptibility. Scand J Infect Dis 36, 24–30 (2004).
Meyer, E., Gastmeier, P., Deja, M., Schwab, F.: Antibiotic consumption and resistance: data from Europe and Germany. Int J Med Microbiol 303, 388–395 (2013).
Trejnowska, E., Deptuła, A., Tarczyńska-Słomian, M., Knapik, P., Jankowski, M., Misiewska-Kaczur, A., Tamowicz, B., Śmiechowicz, J., Antończyk, R., Armatowicz, P., Sułkowski, W., Durek, G.: Surveillance of antibiotic prescribing in intensive care units in Poland. Can J Infect Dis Med Microbiol 2018, 5670238 (2018).
European Centre for Disease Prevention and Control. Antimicrobial Consumption: Annual Epidemiological Report for 2017. ECDC, Stockholm, 2018. Available at https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-antimicrobial-consumption.pdf
Lachowicz, D., Pituch, H., Obuch-Woszczatyński, P.: Antimicrobial susceptibility patterns of Clostridium difficile strains belonging to different polymerase chain reaction ribotypes isolated in Poland in 2012. Anaerobe 31, 37–41 (2015).
Barker, A. K., Ngam, C., Musuuza, J. S., Vaughn, V. M., Safdar, N.: Reducing Clostridium difficile in the inpatient settings: a systematic review of the adherence to and effectivness of C. difficile prevention bundles. Infect Control Hosp Epidemiol 38, 639–650 (2017).
Tasteyre, A., Karjalainen, T., Avesani, V., Delmée, M., Collignon, A., Bourlioux, P., Barc, M. C.: Phenotypic and genotypic diversity of the flagellin gene (fliC) among Clostridium difficile isolates from different serogroups. J Clin Microbiol 38, 3179–3186 (2000).
Hennequin, C., Porcheray, F., Waligora-Dupriet, A., Collignon, A., Barc, M., Bourlioux, P., Karjalainen, T.: GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147, 87–96 (2001).
Waligora, A. J., Hennequin, C., Mullany, P., Bourlioux, P., Collignon, A., Karjalainen, T.: Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun 69, 2144–2153 (2001).
Hennequin, C., Janoir, C., Barc, M. C., Collignon, A., Karjalainen, T.: Identification and characterization of a fibronectin-binding protein from Clostridium difficile. Microbiology 149, 2779–2787 (2003).
Kirby, J. M., Ahern, H., Roberts, A. K., Kumar, V., Freeman, Z., Acharya, K. R., Shone, C. C.: Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J Biol Chem 284, 34666–34673 (2009).
Semenyuk, E. G., Laning, M. L., Foley, J.: Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 9, 87757 (2014).
Burdon, D. W., George, R. H., Mogg, G. A., Arabi, Y., Thompson, H., Johnson, M., Alexander-Williams, J., Keighley, M. R.: Faecal toxin and severity of antibiotic-associated pseudomembranous colitis. J Clin Pathol 34, 548–551 (1981).
Kuehne, S. A., Cartman, S. T., Heap, J. T., Kelly, M. L., Cockayne, A., Minton, N. P.: The role of toxin A and toxin B in Clostridium difficile infection. Nature 467, 711–712 (2010).
Pituch, H., Kreft, D., Obuch-Woszczatynski, P., Wultańska, D., Meisel-Mikołajczyk, F., Łuczak, M., van Belkum, A.: Clonal spread of a Clostridium difficile strain with a complete set of a toxin A, toxin B, and a binary toxin genes among Polish patients with Clostridium difficile associated diarrhea. J Clin Microbiol 43, 772–775 (2005).
Freeman, J., Fawley, W. N., Baines, S., Wilcox, M.: Measurement of toxin production by Clostridium difficile. Lancet 367, 982–983 (2006).
Castagliuolo, I., Kelly, C. P., Qiu, B. S., Nikulasson, S. T., LaMont, J. T., Pothoulakis, C.: IL-11 inhibits Clostridium difficile toxin A enterotoxicity in rat ileum. Am J Physiol 273, 333–341 (1997).
Pothoulakis, C., LaMont, J. T.: Clostridium difficile colitis and diarrhea. Gastroenterol Clin North Am 22, 623–637 (1993).
Khanna, S., Baddour, L. M., Huskins, W. C., Kammer, P. P., Faubion, W. A., Zinsmeister, A. R., Harmsen, W. S., Pardi, D. S.: The epidemiology of Clostridium difficile infection in children: A population-based study. Clin Infect Dis 56, 1401–1406 (2013).
Surawicz, C. M., Brandt, L. J., Binion, D. G., Ananthakrishnan, A. N., Curry, S. R., Gilligan, P. H., McFarland, L. V., Mellow, M., Zuckerbraun, B. S.: Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108, 478–98 (2013).
Zar, F. A., Bakkanagari, S. R., Moorthi, K. M., Davis, M. B.: A comparsion of vancomycin and metronidazole for treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis 45, 302–307 (2007).
Di, X., Bai, N., Zhang, X., Liu, B., Ni, W., Wang, J., Wang, K., Liang, B., Liu, Y., Wang, R.: A meta-analysis of metronidazole and vancomycin for the treatment Clostridium difficile infection, stratified by disease severity. Braz J Infect Dis 19, 339–349 (2015).
Gerding, D. N., Hecht, D. W., Louie, T., Nord, C. E., Talbot, G. H., Cornely, O. A., Buitrago, M., Best, E., Sambol, S., Osmolski, J. R., Kracker, H., Locher, H. H., Charef, P., Wilcox, M.: Susceptibility of Clostridium difficile isolates from a phase 2 clinical trial of cadazolid and vancomycin in C. difficile infection. J Antimicrob Chemother 71, 213–219 (2015).
Freeman, J., Vernon, J., Vickers, R., Wilcox, M. H.: Susceptibility of Clostridium difficile isolates of varying antimicrobial resistance phenotypes to SMT19969 and 11 comparators. Antimicrob Agents Chemother 60, 689–692 (2015).
Kokai-Kun, J. F., Roberts, T., Coughlin, O., Le, C., Whalen, H., Stevenson, R., Wacher, V. J., Sliman, J.: Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: A double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect Dis 19, 487–496 (2019).
Taylor, N. S., Thorne, G. M., Bartlett, J. G.: Comparison of two toxins produced by Clostridium difficile. Infect Immun 34, 1036–1043 (1981).
Dabard, J., Dubos, F., Martinet, L., Ducluzeau, R.: Experimental reproduction of neonatal diarrhea in young gnotobiotic hares simultaneously associated with Clostridium difficile and other Clostridium strains. Infect Immun 24, 7–11 (1979).
Triadafilopoulos, G., Pothoulakis, C., O’Brien, M. J., LaMont, J. T.: Differential effects of Clostridium difficile toxins A and B on rabbit ileum. Gastroenterology 93, 273–279 (1987).
van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, EG., de Vos, W. M., Visser, C. E., Kuijper, E. J., Bartelsman, J. F., Tijssen, J. G., Speelman, P., Dijkgraaf, M. G., Keller, J. J.: Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368, 407–415 (2013).
Borody, T. J., Connelly, N., Mitchell, S. W.: Fecal microbiota transplantation in gastrointestinal diseases. Pol Arch Med Wewn 125, 852–858 (2015).
FAO: Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. FAO, London Ontario, Canada, 2002. Available at http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf
Johnson, S., Maziade, P. J., McFarland, L. V., Trick, W., Donskey, C., Currie, B., Low, D. E., Goldstein, E. J.: Is primary prevention of Clostridium difficile infection possible with specific probiotics? Int J Infect Dis 16, 786–792 (2012).
Castagliuolo, I., LaMont, J. T., Nikulasson, S. T., Pothoulakis, C.: Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect Immun 64, 5225–5232 (1996).
Czepiel, J., Biesiada, G., Dróżdż, M., Gdula-Argasińska, J., Żurańska, J., Marchewka, J., Perucki, W., Wołkow, P., Garlicki, A.: The presence of IL-8 +781 T/C polymorphism is associated with the parameters of severe Clostridium difficile infection. Microb Pathog 114, 281–285 (2018).
Plummer, S., Weaver, M. A., Harris, J. C., Dee, P., Hunter, J.: Clostridium difficile pilot study: Effects of probiotic supplementation on the incidence of C. difficile diarrhea. Int Microbiol 7, 59–62 (2004).
Kotowska, M., Albrecht, P., Szajewska, H.: Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea in children: A randomized double-blind placebo-controlled trial. Aliment Pharmacol Ther 21, 583–590 (2005).
Boonma, P., Spinler, J. K., Venable, S. F., Versalovic, J., Tumwasorn, S.: Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells. BMC Microbiol 14, 177 (2014).
Kaur, S., Vaishnavi, C., Prasad, K. K., Ray, P., Kochhar, R.: Effect of Lactobacillus acidophilus & epidermal growth factor on experimentally induced Clostridium difficile infection. Indian J Med Res 133, 434–441 (2011).
Lee, J. S., Chung, M. J., Seo, J. G.: In vitro evaluation of antimicrobial activity of lactic acid bacteria against Clostridium difficile. Toxicol. Res. 29, 99–106 (2013).
Leclerq, R., Cantón, R., Brown, D. F., Giske, C. G., Heisig, P., MacGowan, A. P., Mouton, J. W., Nordmann, P., Rodloff, A. C., Rossolini, G. M., Soussy, C. J., Steinbakk, M., Winstanley, T. G., Kahlmeter, G.: EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect 19, 141–160 (2013).
Hell, M., Bernhofer, C., Stalzer, P., Kern, J. M., Claassen, E.: Probiotics in Clostridium difficile infection: Reviewing the need for a multistrain probiotic. Benef Microb 4, 39–51 (2013).
Hütt, P., Shchepetova, J., Löivukene, K., Kullisaar, T., Mikelsaar, M.: Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J Appl Microbiol 100, 1324–1332 (2005).
Cassone, M., Serra, P., Mondello, F., Girolamo, A., Scafetti, S., Pistella, E., Venditti, M.: Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treatment with a probiotic preparation of the organism. J Clin Microbiol 41, 5340–5343 (2003).
Rea, M. C., Sit, C. S., Clayton, E., O’Connor, P. M., Whittal, R. M., Zheng, J., Vederas, J. C., Ross, R. P., Hill, C.: Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci U S A 107, 9352–9357 (2010).
Pechine, S., Gleizes, A., Janoir, C., Gorges-Kergot, R., Barc, M. C., Delmée, M., Collignon, A.: Immunological properties of surface proteins of Clostridium difficile. J Med Microbiol 54, 193–196 (2005).
Pechine, S., Janoir, C., Collignon, A.: Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. J Clin Microbiol 43, 5018–5025 (2005).
Pechine, S., Deneve, C., Le Monnier, A., Hoys, S., Janoir, C., Collignon, A.: Immunization of hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen. FEMS Immunol Med Microbiol 63, 73–81 (2011).
Wright, A., Drudy, D., Kyne, L., Brown, K., Fairweather, N. F.: Immunoreactive cell wall proteins of Clostridium difficile identified by human sera. J Med Microbiol 57, 750–756 (2008).
Wilcox, M. H., Gerding, D. N., Poxton, I. R., Kelly, C., Nathan, R., Birch, T., Cornely, A. O., Rahav, G., Bouza, E., Lee, C., Jenkin, G., Jensen, W., Kim, Y., Yoshida, J., Gabryelski, L., Pedley, A., Eves, K., Tipping, R., Guris, D., Kartsonis, N., Dorr, M.: Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med 376, 305–317 (2017).
Foglia, G., Shah, S., Luxemburger, C., Pietrobon, P. J.: Clostridium difficile: Development of a novel candidate vaccine. Vaccine 30, 4307–4309 (2012).
Greenberg, R. N., Marburg, T. C., Foglia, G., Warny, M.: Phase I dose finding studies of an adjuvanted Clostridium difficile toxoid vaccine. Vaccine 30, 2245–2249 (2012).
de Bruyn, G., Saleh, J., Workman, D., Pollak, R., Elinoff, V., Fraser, N. J., Lefebvre, G., Martens, M., Mills, R. E., Nathan, R., Trevino, M., van Cleeff, M., Foglia, G., Ozol-Godfrey, A., Patel, D. M., Pietrobon, P. J., Gesser, R.: Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: A randomized Phase 2 clinical trial. Vaccine 34, 2170–2178 (2016).
Sekulovic, O., Meessen-Pinard, M., Fortier, L. C.: Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J Bacteriol 193, 2726–2734 (2011).
Rea, M. C., Alemayehu, D., Rosss, R. P., Hill, C.: Gut solutions to a gut problem: Bacteriocins, probiotics and bacteriophage for control of Clostridium difficile infection. J Med Microbiol 62, 1369–1378 (2013).
Nale, J. Y., Spencer, J., Hargreaves, K. R., Buckley, A. M., Trzepiński, P., Douce, R. G., Clokie, M. R. J.: Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob Agents Chemother 60, 968–981 (2016).
Nale, J. Y., Redgwell, T. A., Millard, A., Clokie, M. R. J.: Effiacy of optimised bacteriophage cocktail to clear Clostridium difficile in a batch fermentation model. Antibiotics (Basel) 7, 13 (2018).
Tschudin-Sutter, S., Kuijper, E. J., Durovic, A., Vehreschild, M. J. G. T., Barbut, F., Eckert, C., Fitzpatrick, F., Hell, M., Norèn, T., O’Driscoll, J., Coia, J., Gastmeier, P., von Müller, L., Wilcox, M. H., Widmer, A. F.: Guidance document for prevention of Clostridium difficile infection in acute healthcare settings. Clin Microbiol Infect 24, 1051–1054 (2018).