View More View Less
  • 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Abstract

The aim of this study was to investigate the rate of resistance to macrolide-lincosamide-streptogramin B (MLSB) antibiotics, the mechanisms underlying this resistance and to evaluate their relationship with virulence genes profiles of 435 Bulgarian clinical isolates Staphylococcus aureus. The highest resistance was observed to penicillin (96.09%), followed by resistance to erythromycin and clindamycin (34.02 and 22.76%, respectively). Of the tested clinical strains of S. aureus, 96.09% contained the blaZ gene associated with penicillin resistance and 11.03%, the mecA gene responsible for methicillin resistance. The most prevalent were the erm genotypes associated with the presence mainly of ermA and ermC genes followed by ermB. The frequency rates of these genes, alone or in combinations were ermA 41.89%, ermB 27.70%, ermC 43.99%. The majority of Bulgarian macrolide resistant S. aureus exhibited cMLS phenotype, in 58.78% (P = 0.0036). The following virulence genotypes were present significantly more often in the macrolide resistant S. aureus isolates among the studied ones: hlg; hlg,seb; hlg,seb,sec; hlg,seb,seh; hlg,sec; hlg,sec,sei; hlg,sec,sei; hlg,sei; hlg,sei,sej; hlg,sej. This survey found correlation between the virulence profiles with a small number of genes and macrolide resistance among Bulgarian clinical S. aureus isolates, in contrast to sensitive strains, which possessed profiles predominantly with multiple genes.

  • [1]

    Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader, HS, et al.. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2019; 63(7): e0035519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2]

    Karbuz A, Karahan ZC, Aldemir-Kocabaş B, Tekeli A, Özdemir H, Güriz H, et al.. Evaluation of antimicrobial susceptibilities and virulence factors of Staphylococcus aureus strains isolated from community-acquired and health-care associated pediatric infections. Turk J Pediatr 2017; 59: 395403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3]

    Li T, Lu H, Wang X, Gao Q, Dai Y, Shang J, et al.. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front Cell Infect Microbiol 2017; 7: 127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4]

    Pérez-Montarelo D, Viedma E, Murcia M, Muñoz-Gallego I, Larrosa N, Brañas P, et al.. Pathogenic characteristics of Staphylococcus aureus endovascular infection isolates from different clonal complexes. Front Microbiol 2017; 8: 917, 1-131-13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5]

    Sipahi OR, Uysal S, Aydemir , Pullukcu H, Tasbakan M, Tünger A, et al.. Antibacterial resistance patterns and incidence of hospital-acquired Staphylococcus aureus bacteremia in a tertiary care educational hospital in Turkey: a perspective through 2001-2013. Turk J Med Sci 2017; 47(4): 121015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    Asante J, Govinden U, Owusu-Ofori A, Bester L, Essack SY. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates from a hospital in Ghana Afr. J Clin Exper Microbiol 2019; 20(3): 16474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7]

    Blanquart F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol Appl 2019; 12(3): 36583.

  • [8]

    Gergova RT, Tsitou VMS, Gergova II, Muhtarova AA, Mitov IG. Correlation of methicillin resistance and virulence genes of Staphylococcus aureus with infection types and mode of acquisition in Sofia, Bulgaria. Afr J Clin Exper Microbiol 2019; 20(4): 2808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    Güdücüoğlu H. Hospital infections related with hospital microbial environment. East J Med 2015; 20: 17781.

  • [10]

    Mitova Y, Angelova S, Doicheva V, Donkov G, Mincheva TS. Clinical and etiological structure of nosocomial infections in Bulgaria for the period 2011-2016. Acta Med Bulg 2017; 2: 2630.

    • Search Google Scholar
    • Export Citation
  • [11]

    Sader HS, Mendes RE, Streit JM, Flamm RK. Antimicrobial susceptibility trends among Staphylococcus aureus from U.S. hospitals: results from 7 years of the ceftaroline (AWARE) surveillance program (2010–2016). Antimicrob Agents Chemother 2017; 1: e0104317.

    • Search Google Scholar
    • Export Citation
  • [12]

    Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 2002; 34: 48292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13]

    Sarrou S, Malli E, Tsilipounidaki K, Florou Z, Medvecky M, Skoulakis A, et al.. MLSB-resistant Staphylococcus aureus in Central Greece: rate of resistance and molecular characterization. Microb Drug Res 2018; 25, Mary Ann Liebert, Inc.

    • Search Google Scholar
    • Export Citation
  • [14]

    Adhikari RP, Shrestha S, Barakoti A, Amatya R. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect Dis 2017; 17: 483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15]

    Schroede RM, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes 2017; 8(1): 39.

  • [16]

    European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoint tables – bacteria. Version 10.0; 2020. http://www.eucast.org.

    • Search Google Scholar
    • Export Citation
  • [17]

    Pekana A, Green E. Antimicrobial resistance profiles of Staphylococcus aureus isolated from meat carcasses and bovine milk in abattoirs and dairy farms of the eastern cape, South Africa. Int J Environ Res Publ Health 2018; 15: 2223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [18]

    Abraham T, Sistla S. Molecular epidemiology of macrolide resistant Group A streptococci from Puducherry. India J Infect DevCtries 2017; 11(9): 67983.

    • Search Google Scholar
    • Export Citation
  • [19]

    Gergova R, Petrova G, Gergov S, Minchev P, Mitov I, Strateva T. Microbiological features of the upper respiratory tract infections in Bulgarian children for the period 1998–2014 our university's experience. Balk Med J 2016; 33: 67580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [20]

    Abbasi M, Salehi MB, Bahador N, Taherikalani M. Antibiotic resistance patterns and virulence determinants of different SCCmec and pulsotypes of Staphylococcus aureus isolated from a major hospital in Ilam, Iran. Open Microbiol J 2017; 11: 21123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [21]

    Manilal A, Shewangizaw M, Mama M, Gezmu T, Merdekios B. Methicillin-resistant Staphylococcus aureus colonization in HIV patients of Arba Minch province, Ethiopia: carriage rates, antibiotic resistance, and biofilm formation. Acta Microbiol Immunol Hung 2019; 66(4): 46983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [22]

    Liang Y, Tu C, Tan C, El-Sayed Ahmed MAEG, Dai M, Xia Y, et al.. Antimicrobial resistance, virulence genes profiling and molecular relatedness of methicillin-resistant Staphylococcus aureus strains isolated from hospitalized patients in Guangdong Province, China. Infect Drug Resist 2019; 12: 44759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [23]

    European Center for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe; 2018. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018.

    • Search Google Scholar
    • Export Citation
  • [24]

    European Center for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe; 2017. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2017.

    • Search Google Scholar
    • Export Citation
  • [25]

    Khoshnood S, Shahi F, Jomehzadeh N, Montazeri EA, Saki M, Mortazavi SM, et al.. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among methicillin-resistant Staphylococcus aureus strains isolated from burn patients. Acta Microbiol Immunol Hung 2019; 66(3): 38798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [26]

    Uzun B, Güngör S, Pektaş B, Gökmen A, Yula E, Koçal F, et al.. Macrolide-lincosamide-streptogramin B (MLSB) resistance phenotypes in clinical Staphylococcus isolates and investigation of telithromycin activity. Mikrobiyol Bülteni 2014; 48: 46976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27]

    Shoji K, Shinjoh M, Horikoshi Y, Tang J, Watanabe Y, Sugita K, et al.. High rate of inducible clindamycin resistance in Staphylococcus aureus isolates – a multicenter study in Tokyo, Japan. J Infect Chemother 2015; 21(2): 813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [28]

    Khodabandeh M, Mohammadi M, Abdolsalehi MR, Alvandimanesh A, Gholami M, Bibalan MH, et al.. Analysis of resistance to macrolide-lincosamide-streptogramin B among mecA-positive Staphylococcus aureus isolates. Osong Public Health Res Perspect 2019; 10(1): 2531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [29]

    Pardo L, Machado V, Cuello D, Aguerrebere P, Seija V, Braga V, et al.. Macrolide-lincosamide-streptogramin B resistance phenotypes and their associated genotypes in Staphylococcus aureus isolates from a tertiary level public hospital of Uruguay. Rev Argent Microbiol 2020; 52(3): 20210. https://doi.org/10.1016/j.ram.2019.10.004.

    • Search Google Scholar
    • Export Citation
  • [30]

    Schmitz FJ, Sadurski RA, Kray M, Boos R, Geisel K, Köhrer J, et al.. Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. J Antimicrob Chemother 2000; 45: 8914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [31]

    Rudkin JK, Edwards AM, Bowden MG, Eric LB, Pozzi C, Waters EM, et al.. Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. J Infect Dis 2012; 205(5): 798806.

    • Crossref
    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
sumbission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 652 EUR / 812 USD
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 33 6 8
Jun 2021 68 0 0
Jul 2021 47 7 6
Aug 2021 49 0 0
Sep 2021 39 2 2
Oct 2021 0 0 0