View More View Less
  • 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Abstract

The aim of this study was to investigate the rate of resistance to macrolide-lincosamide-streptogramin B (MLSB) antibiotics, the mechanisms underlying this resistance and to evaluate their relationship with virulence genes profiles of 435 Bulgarian clinical isolates Staphylococcus aureus. The highest resistance was observed to penicillin (96.09%), followed by resistance to erythromycin and clindamycin (34.02 and 22.76%, respectively). Of the tested clinical strains of S. aureus, 96.09% contained the blaZ gene associated with penicillin resistance and 11.03%, the mecA gene responsible for methicillin resistance. The most prevalent were the erm genotypes associated with the presence mainly of ermA and ermC genes followed by ermB. The frequency rates of these genes, alone or in combinations were ermA 41.89%, ermB 27.70%, ermC 43.99%. The majority of Bulgarian macrolide resistant S. aureus exhibited cMLS phenotype, in 58.78% (P = 0.0036). The following virulence genotypes were present significantly more often in the macrolide resistant S. aureus isolates among the studied ones: hlg; hlg,seb; hlg,seb,sec; hlg,seb,seh; hlg,sec; hlg,sec,sei; hlg,sec,sei; hlg,sei; hlg,sei,sej; hlg,sej. This survey found correlation between the virulence profiles with a small number of genes and macrolide resistance among Bulgarian clinical S. aureus isolates, in contrast to sensitive strains, which possessed profiles predominantly with multiple genes.

  • [1]

    Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader, HS, et al. . The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2019; 63(7): e0035519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2]

    Karbuz A, Karahan ZC, Aldemir-Kocabaş B, Tekeli A, Özdemir H, Güriz H, et al. . Evaluation of antimicrobial susceptibilities and virulence factors of Staphylococcus aureus strains isolated from community-acquired and health-care associated pediatric infections. Turk J Pediatr 2017; 59: 395403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3]

    Li T, Lu H, Wang X, Gao Q, Dai Y, Shang J, et al. . Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front Cell Infect Microbiol 2017; 7: 127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4]

    Pérez-Montarelo D, Viedma E, Murcia M, Muñoz-Gallego I, Larrosa N, Brañas P, et al. . Pathogenic characteristics of Staphylococcus aureus endovascular infection isolates from different clonal complexes. Front Microbiol 2017; 8: 917, 1-131-13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5]

    Sipahi OR, Uysal S, Aydemir , Pullukcu H, Tasbakan M, Tünger A, et al. . Antibacterial resistance patterns and incidence of hospital-acquired Staphylococcus aureus bacteremia in a tertiary care educational hospital in Turkey: a perspective through 2001-2013. Turk J Med Sci 2017; 47(4): 121015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    Asante J, Govinden U, Owusu-Ofori A, Bester L, Essack SY. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates from a hospital in Ghana Afr. J Clin Exper Microbiol 2019; 20(3): 16474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7]

    Blanquart F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol Appl 2019; 12(3): 36583.

  • [8]

    Gergova RT, Tsitou VMS, Gergova II, Muhtarova AA, Mitov IG. Correlation of methicillin resistance and virulence genes of Staphylococcus aureus with infection types and mode of acquisition in Sofia, Bulgaria. Afr J Clin Exper Microbiol 2019; 20(4): 2808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    Güdücüoğlu H. Hospital infections related with hospital microbial environment. East J Med 2015; 20: 17781.

  • [10]

    Mitova Y, Angelova S, Doicheva V, Donkov G, Mincheva TS. Clinical and etiological structure of nosocomial infections in Bulgaria for the period 2011-2016. Acta Med Bulg 2017; 2: 2630.

    • Search Google Scholar
    • Export Citation
  • [11]

    Sader HS, Mendes RE, Streit JM, Flamm RK. Antimicrobial susceptibility trends among Staphylococcus aureus from U.S. hospitals: results from 7 years of the ceftaroline (AWARE) surveillance program (2010–2016). Antimicrob Agents Chemother 2017; 1: e0104317.

    • Search Google Scholar
    • Export Citation
  • [12]

    Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 2002; 34: 48292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13]

    Sarrou S, Malli E, Tsilipounidaki K, Florou Z, Medvecky M, Skoulakis A, et al. . MLSB-resistant Staphylococcus aureus in Central Greece: rate of resistance and molecular characterization. Microb Drug Res 2018; 25, Mary Ann Liebert, Inc.

    • Search Google Scholar
    • Export Citation
  • [14]

    Adhikari RP, Shrestha S, Barakoti A, Amatya R. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect Dis 2017; 17: 483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15]

    Schroede RM, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes 2017; 8(1): 39.

  • [16]

    European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoint tables – bacteria. Version 10.0; 2020. http://www.eucast.org.

    • Search Google Scholar
    • Export Citation
  • [17]

    Pekana A, Green E. Antimicrobial resistance profiles of Staphylococcus aureus isolated from meat carcasses and bovine milk in abattoirs and dairy farms of the eastern cape, South Africa. Int J Environ Res Publ Health 2018; 15: 2223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [18]

    Abraham T, Sistla S. Molecular epidemiology of macrolide resistant Group A streptococci from Puducherry. India J Infect DevCtries 2017; 11(9): 67983.

    • Search Google Scholar
    • Export Citation
  • [19]

    Gergova R, Petrova G, Gergov S, Minchev P, Mitov I, Strateva T. Microbiological features of the upper respiratory tract infections in Bulgarian children for the period 1998–2014 our university's experience. Balk Med J 2016; 33: 67580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [20]

    Abbasi M, Salehi MB, Bahador N, Taherikalani M. Antibiotic resistance patterns and virulence determinants of different SCCmec and pulsotypes of Staphylococcus aureus isolated from a major hospital in Ilam, Iran. Open Microbiol J 2017; 11: 21123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [21]

    Manilal A, Shewangizaw M, Mama M, Gezmu T, Merdekios B. Methicillin-resistant Staphylococcus aureus colonization in HIV patients of Arba Minch province, Ethiopia: carriage rates, antibiotic resistance, and biofilm formation. Acta Microbiol Immunol Hung 2019; 66(4): 46983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [22]

    Liang Y, Tu C, Tan C, El-Sayed Ahmed MAEG, Dai M, Xia Y, et al. . Antimicrobial resistance, virulence genes profiling and molecular relatedness of methicillin-resistant Staphylococcus aureus strains isolated from hospitalized patients in Guangdong Province, China. Infect Drug Resist 2019; 12: 44759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [23]

    European Center for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe; 2018. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018.

    • Search Google Scholar
    • Export Citation
  • [24]

    European Center for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe; 2017. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2017.

    • Search Google Scholar
    • Export Citation
  • [25]

    Khoshnood S, Shahi F, Jomehzadeh N, Montazeri EA, Saki M, Mortazavi SM, et al. . Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among methicillin-resistant Staphylococcus aureus strains isolated from burn patients. Acta Microbiol Immunol Hung 2019; 66(3): 38798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [26]

    Uzun B, Güngör S, Pektaş B, Gökmen A, Yula E, Koçal F, et al. . Macrolide-lincosamide-streptogramin B (MLSB) resistance phenotypes in clinical Staphylococcus isolates and investigation of telithromycin activity. Mikrobiyol Bülteni 2014; 48: 46976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27]

    Shoji K, Shinjoh M, Horikoshi Y, Tang J, Watanabe Y, Sugita K, et al. . High rate of inducible clindamycin resistance in Staphylococcus aureus isolates – a multicenter study in Tokyo, Japan. J Infect Chemother 2015; 21(2): 813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [28]

    Khodabandeh M, Mohammadi M, Abdolsalehi MR, Alvandimanesh A, Gholami M, Bibalan MH, et al. . Analysis of resistance to macrolide-lincosamide-streptogramin B among mecA-positive Staphylococcus aureus isolates. Osong Public Health Res Perspect 2019; 10(1): 2531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [29]

    Pardo L, Machado V, Cuello D, Aguerrebere P, Seija V, Braga V, et al. . Macrolide-lincosamide-streptogramin B resistance phenotypes and their associated genotypes in Staphylococcus aureus isolates from a tertiary level public hospital of Uruguay. Rev Argent Microbiol 2020; 52(3): 20210. https://doi.org/10.1016/j.ram.2019.10.004.

    • Search Google Scholar
    • Export Citation
  • [30]

    Schmitz FJ, Sadurski RA, Kray M, Boos R, Geisel K, Köhrer J, et al. . Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. J Antimicrob Chemother 2000; 45: 8914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [31]

    Rudkin JK, Edwards AM, Bowden MG, Eric LB, Pozzi C, Waters EM, et al. . Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. J Infect Dis 2012; 205(5): 798806.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 33 6 8
Jun 2021 55 0 0
Jul 2021 0 0 0