The commensal microflora collection known as microbiota has an essential role in maintaining the host's physiological homeostasis. The microbiota has a vital role in induction and regulation of local and systemic immune responses. On the other hand, the immune system involves maintaining microbiota compositions. Optimal microbiota-immune system cross-talk is essential for protective responses to pathogens and immune tolerance to self and harmless environmental antigens. Any change in this symbiotic relationship may cause susceptibility to diseases. The association of various cancers and auto-immune diseases with microbiota has been proven. Here we review the interaction of immune responses to gut microbiota, focusing on innate and adaptive immune system and disease susceptibility.
Clemente JC , Ursell LK , Parfrey LW , Knight R . The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148: 1258–1270. https://doi.org/10.1016/j.cell.2012.01.035.
Dzutsev A , Badger JH , Perez-Chanona E , Roy S , Salcedo R , Smith CK , et al.. Microbes and Cancer. Annu Rev Immunol 2017; 35: 199–228. https://doi.org/10.1146/annurev-immunol-051116-052133.
Belkaid Y , Hand TW . Role of the microbiota in immunity and inflammation. Cell 2014; 157: 121–141. https://doi.org/10.1016/j.cell.2014.03.011.
Blekhman R , Goodrich JK , Huang K , Sun Q , Bukowski R , Bell JT , et al.. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 2015; 16: 191. https://doi.org/10.1186/s13059-015-0759-1.
Flandroy L , Poutahidis T , Berg G , Clarke G , Dao M-C , Decaestecker E , et al.. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ 2018; 627: 1018–1038. https://doi.org/10.1016/j.scitotenv.2018.01.288.
Zheng D , Liwinski T , Elinav E . Interaction between microbiota and immunity in health and disease. Cell Res. 2020; 30: 492–506. https://doi.org/10.1038/s41422-020-0332-7.
Belkaid Y , Harrison OJ . Homeostatic immunity and the microbiota. Immunity 2017; 46: 562–576. https://doi.org/10.1016/j.immuni.2017.04.008.
Levy M , Blacher E , Elinav E . Microbiome, metabolites and host immunity. Curr Opin Microbiol 2017; 35: 8–15. https://doi.org/10.1016/j.mib.2016.10.003.
Wen L , Ley RE , Volchkov PV , Stranges PB , Avanesyan L , Stonebraker AC , et al.. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455: 1109–1113. https://doi.org/10.1038/nature07336.
Chassaing B , Ley RE , Gewirtz AT . Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology 2014; 147: 1363–1377.e17. https://doi.org/10.1053/j.gastro.2014.08.033.
Carvalho FA , Koren O , Goodrich JK , Johansson MEV , Nalbantoglu I , Aitken JD , et al.. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 2012; 12: 139–152. https://doi.org/10.1016/j.chom.2012.07.004.
Vijay-Kumar M , Aitken JD , Carvalho FA , Cullender TC , Mwangi S , Srinivasan S , et al.. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010; 328: 228–231. https://doi.org/10.1126/science.1179721.
Vijay-Kumar M , Sanders CJ , Taylor RT , Kumar A , Aitken JD , Sitaraman SV , et al.. Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 2007; 117: 3909–3921. https://doi.org/10.1172/JCI33084.
Valentini M , Piermattei A , Di Sante G , Migliara G , Delogu G , Ria F . Immunomodulation by gut microbiota: role of Toll-like receptor expressed by T cells. J Immunol Res 2014; 2014: 586939. https://doi.org/10.1155/2014/586939.
Lee J , Mo J-H , Katakura K , Alkalay I , Rucker AN , Liu Y-T , et al.. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 2006; 8: 1327–1336. https://doi.org/10.1038/ncb1500.
Round JL , Lee SM , Li J , Tran G , Jabri B , Chatila TA , et al.. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332: 974–977. https://doi.org/10.1126/science.1206095.
Zou S , Fang L , Lee M-H . Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep 2018; 6: 1–12. https://doi.org/10.1093/gastro/gox031.
Dalby MJ , Aviello G , Ross AW , Walker AW , Barrett P , Morgan PJ . Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamic expression of the acute phase protein, SerpinA3N. Sci Rep 2018; 8. https://doi.org/10.1038/s41598-018-33928-4.
Bereswill S , Kühl AA , Alutis M , Fischer A , Möhle L , Struck D , et al.. The impact of Toll-like-receptor-9 on intestinal microbiota composition and extra-intestinal sequelae in experimental Toxoplasma gondii induced ileitis. Gut Pathog 2014; 6: 19. https://doi.org/10.1186/1757-4749-6-19.
Ubeda C , Lipuma L , Gobourne A , Viale A , Leiner I , Equinda M , et al.. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med 2012; 209: 1445–1456. https://doi.org/10.1084/jem.20120504.
Moreira LO , Zamboni DS . NOD1 and NOD2 signaling in infection and inflammation. Front Immunol 2012; 3. https://doi.org/10.3389/fimmu.2012.00328.
Bouskra D , Brézillon C , Bérard M , Werts C , Varona R , Boneca IG , et al.. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008; 456: 507–510. https://doi.org/10.1038/nature07450.
Petnicki-Ocwieja T , Hrncir T , Liu Y-J , Biswas A , Hudcovic T , Tlaskalova-Hogenova H , et al.. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 2009; 106: 15813–15818. https://doi.org/10.1073/pnas.0907722106.
Robertson SJ , Zhou JY , Geddes K , Rubino SJ , Cho JH , Girardin SE , et al.. Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes 2013; 4: 222–231. https://doi.org/10.4161/gmic.24373.
Lu W-G , Zou Y-F , Feng X-L , Yuan F-L , Gu Y-L , Li X , et al.. Association of NOD1 (CARD4) insertion/deletion polymorphism with susceptibility to IBD: a meta-analysis. World J Gastroenterol WJG 2010; 16: 4348–4356. https://doi.org/10.3748/wjg.v16.i34.4348.
Li E , Hamm CM , Gulati AS , Sartor RB , Chen H , Wu X , et al.. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One 2012; 7: e26284. https://doi.org/10.1371/journal.pone.0026284.
Glas J , Seiderer J , Tillack C , Pfennig S , Beigel F , Jürgens M , et al.. The NOD2 single nucleotide polymorphisms rs2066843 and rs2076756 are novel and common crohn’s disease susceptibility gene variants. PLoS One 2010; 5: e14466. https://doi.org/10.1371/journal.pone.0014466.
Levy M , Thaiss CA , Zeevi D , Dohnalová L , Zilberman-Schapira G , Mahdi JA , et al.. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015; 163: 1428–1443. https://doi.org/10.1016/j.cell.2015.10.048.
Wlodarska M , Thaiss CA , Nowarski R , Henao-Mejia J , Zhang J-P , Brown EM , et al.. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014; 156: 1045–1059. https://doi.org/10.1016/j.cell.2014.01.026.
Hu B , Elinav E , Huber S , Strowig T , Hao L , Hafemann A , et al.. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci USA 2013; 110: 9862–9867. https://doi.org/10.1073/pnas.1307575110.
Elinav E , Strowig T , Kau AL , Henao-Mejia J , Thaiss CA , Booth CJ , et al.. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011; 145: 745–757. https://doi.org/10.1016/j.cell.2011.04.022.
Mamantopoulos M , Ronchi F , Van Hauwermeiren F , Vieira-Silva S , Yilmaz B , Martens L , et al.. Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition. Immunity 2017; 47: 339–348.e4. https://doi.org/10.1016/j.immuni.2017.07.011.
Seregin SS , Golovchenko N , Schaf B , Chen J , Pudlo NA , Mitchell J , et al.. NLRP6 protects IL10−/− mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Rep 2017; 19: 733–745. https://doi.org/10.1016/j.celrep.2017.03.080.
Levy M , Shapiro H , Thaiss CA , Elinav E . NLRP6: a multifaceted innate immune sensor. Trends Immunol 2017; 38: 248–260. https://doi.org/10.1016/j.it.2017.01.001.
Salzman NH , Hung K , Haribhai D , Chu H , Karlsson-Sjöberg J , Amir E , et al.. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 2010; 11: 76–83. https://doi.org/10.1038/ni.1825.
Elphick D , Liddell S , Mahida YR . Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 2008; 172: 702–713. https://doi.org/10.2353/ajpath.2008.070755.
Wehkamp J , Salzman NH , Porter E , Nuding S , Weichenthal M , Petras RE , et al.. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 2005; 102: 18129–18134. https://doi.org/10.1073/pnas.0505256102.
Vaishnava S , Yamamoto M , Severson KM , Ruhn KA , Yu X , Koren O , et al.. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334: 255–258. https://doi.org/10.1126/science.1209791.
Honda M , Surewaard BGJ , Watanabe M , Hedrick CC , Lee W-Y , Brown K , et al.. Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome. Nat Commun 2020; 11: 1329. https://doi.org/10.1038/s41467-020-15068-4.
Kim M , Galan C , Hill AA , Wu W-J , Fehlner-Peach H , Song HW , et al.. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 2018; 49: 151–163.e5. https://doi.org/10.1016/j.immuni.2018.05.009.
Diehl GE , Longman RS , Zhang J-X , Breart B , Galan C , Cuesta A , et al.. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 2013; 494: 116–120. https://doi.org/10.1038/nature11809.
Chang PV , Hao L , Offermanns S , Medzhitov R . The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014; 111: 2247–2252. https://doi.org/10.1073/pnas.1322269111.
Ji J , Shu D , Zheng M , Wang J , Luo C , Wang Y , et al.. Microbial metabolite butyrate facilitates M2 macrophage polarization and function, Sci Rep 2016; 6: 24838. https://doi.org/10.1038/srep24838.
Skelly AN , Sato Y , Kearney S , Honda K . Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 2019; 19: 305–323. https://doi.org/10.1038/s41577-019-0144-5.
Zhang D , Chen G , Manwani D , Mortha A , Xu C , Faith JJ , et al.. Neutrophil ageing is regulated by the microbiome. Nature 2015; 525: 528–532. https://doi.org/10.1038/nature15367.
Clarke TB , Davis KM , Lysenko ES , Zhou AY , Yu Y , Weiser JN . Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16: 228–231. https://doi.org/10.1038/nm.2087.
Rescigno M , Urbano M , Valzasina B , Francolini M , Rotta G , Bonasio R , et al.. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2: 361–367. https://doi.org/10.1038/86373.
Konieczna P , Ferstl R , Ziegler M , Frei R , Nehrbass D , Lauener RP , et al.. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PLoS One 2013; 8: e62617. https://doi.org/10.1371/journal.pone.0062617.
Rubic T , Lametschwandtner G , Jost S , Hinteregger S , Kund J , Carballido-Perrig N , et al.. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol 2008; 9: 1261–1269. https://doi.org/10.1038/ni.1657.
Zheng Y , Valdez PA , Danilenko DM , Hu Y , Sa SM , Gong Q , et al.. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282–289. https://doi.org/10.1038/nm1720.
Hughes T , Becknell B , Freud AG , McClory S , Briercheck E , Yu J , et al.. Interleukin-1beta selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity 2010; 32: 803–814. https://doi.org/10.1016/j.immuni.2010.06.007.
Qiu J , Guo X , Chen ZE , He L , Sonnenberg GF , Artis D , et al.. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 2013; 39: 386–399. https://doi.org/10.1016/j.immuni.2013.08.002.
Sonnenberg GF , Monticelli LA , Alenghat T , Fung TC , Hutnick NA , Kunisawa J , et al.. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012; 336: 1321–1325. https://doi.org/10.1126/science.1222551.
Zenewicz LA , Yin X , Wang G , Elinav E , Hao L , Zhao L , et al.. Interleukin-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J Immunol Baltim Md 2013; 1950(190): 5306–5312. https://doi.org/10.4049/jimmunol.1300016.
Clark E , Hoare C , Tanianis-Hughes J , Carlson GL , Warhurst G . Interferon γ induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft–mediated process. Gastroenterology 2005; 128: 1258–1267. https://doi.org/10.1053/j.gastro.2005.01.046.
Kubinak JL , Round JL . Do antibodies select a healthy microbiota? Nat Rev Immunol 2016; 16: 767–774. https://doi.org/10.1038/nri.2016.114.
Palm NW , de Zoete MR , Cullen TW , Barry NA , Stefanowski J , Hao L , et al.. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014; 158: 1000–1010. https://doi.org/10.1016/j.cell.2014.08.006.
Peterson DA , McNulty NP , Guruge JL , Gordon JI . IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007; 2: 328–339. https://doi.org/10.1016/j.chom.2007.09.013.
Shulzhenko N , Morgun A , Hsiao W , Battle M , Yao M , Gavrilova O , et al.. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med 2011; 17: 1585–1593. https://doi.org/10.1038/nm.2505.
Catanzaro JR , Strauss JD , Bielecka A , Porto AF , Lobo FM , Urban A , et al.. IgA-deficient humans exhibit gut microbiota dysbiosis despite production of compensatory IgM. BioRxiv 2018; 446724. https://doi.org/10.1101/446724.
Kim M , Qie Y , Park J , Kim CH . Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 2016; 20: 202–214. https://doi.org/10.1016/j.chom.2016.07.001.
Tanoue T , Morita S , Plichta DR , Skelly AN , Suda W , Sugiura Y , et al.. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 2019; 565: 600–605. https://doi.org/10.1038/s41586-019-0878-z.
Luu M , Weigand K , Wedi F , Breidenbend C , Leister H , Pautz S , et al.. Regulation of the effector function of CD8 + T cells by gut microbiota-derived metabolite butyrate. Sci Rep 2018; 8: 1–10. https://doi.org/10.1038/s41598-018-32860-x.
Brown EM , Kenny DJ , Xavier RJ . Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu Rev Immunol 2019; 37: 599–624. https://doi.org/10.1146/annurev-immunol-042718-041841.
Sallusto F . Heterogeneity of human CD4(+) T cells against microbes. Annu Rev Immunol 2016; 34: 317–334. https://doi.org/10.1146/annurev-immunol-032414-112056.
Atarashi K , Suda W , Luo C , Kawaguchi T , Motoo I , Narushima S , et al.. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 2017; 358: 359–365. https://doi.org/10.1126/science.aan4526.
von Moltke J , Ji M , Liang H-E , Locksley RM . Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 2016; 529: 221–225. https://doi.org/10.1038/nature16161.
Gerbe F , Jay P . Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune system. Mucosal Immunol 2016; 9: 1353–1359. https://doi.org/10.1038/mi.2016.68.
Atarashi K , Nishimura J , Shima T , Umesaki Y , Yamamoto M , Onoue M , et al.. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008; 455: 808–812. https://doi.org/10.1038/nature07240.
Ivanov II , Atarashi K , Manel N , Brodie EL , Shima T , Karaoz U , et al.. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485–498. https://doi.org/10.1016/j.cell.2009.09.033.
Schnupf P , Gaboriau-Routhiau V , Sansonetti PJ , Cerf-Bensussan N . Segmented filamentous bacteria, Th17 inducers and helpers in a hostile world. Curr Opin Microbiol 2017; 35: 100–109. https://doi.org/10.1016/j.mib.2017.03.004.
Tan TG , Sefik E , Geva-Zatorsky N , Kua L , Naskar D , Teng F , et al.. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A 2016; 113: E8141–E8150. https://doi.org/10.1073/pnas.1617460113.
Zielinski CE , Mele F , Aschenbrenner D , Jarrossay D , Ronchi F , Gattorno M , et al.. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 2012; 484: 514–518. https://doi.org/10.1038/nature10957.
Geuking MB , Cahenzli J , Lawson MAE , Ng DCK , Slack E , Hapfelmeier S , et al.. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011; 34: 794–806. https://doi.org/10.1016/j.immuni.2011.03.021.
Park J , Kim M , Kang SG , Jannasch AH , Cooper B , Patterson J , et al.. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 2015; 8: 80–93. https://doi.org/10.1038/mi.2014.44.
Smith PM , Howitt MR , Panikov N , Michaud M , Gallini CA , Bohlooly-Y M , et al.. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–573. https://doi.org/10.1126/science.1241165.
Round JL , Lee SM , Li J , Tran G , Jabri B , Chatila TA , et al.. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332: 974–977. https://doi.org/10.1126/science.1206095.
Round JL , Mazmanian SK . Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 2010; 107: 12204–12209. https://doi.org/10.1073/pnas.0909122107.
Kato LM , Kawamoto S , Maruya M , Fagarasan S . Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol Cell Biol 2014; 92: 49–56. https://doi.org/10.1038/icb.2013.54.
Kawamoto S , Maruya M , Kato LM , Suda W , Atarashi K , Doi Y , et al.. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 2014; 41: 152–165. https://doi.org/10.1016/j.immuni.2014.05.016.