Authors:
Farhad Riazi-Rad Department of Immunology, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Farhad Riazi-Rad in
Current site
Google Scholar
PubMed
Close
,
Ava Behrouzi Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Ava Behrouzi in
Current site
Google Scholar
PubMed
Close
,
Hoora Mazaheri Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Hoora Mazaheri in
Current site
Google Scholar
PubMed
Close
,
Asal Katebi Department of Immunology, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Asal Katebi in
Current site
Google Scholar
PubMed
Close
, and
Soheila Ajdary Department of Immunology, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Soheila Ajdary in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5052-2523
Restricted access

Abstract

The commensal microflora collection known as microbiota has an essential role in maintaining the host's physiological homeostasis. The microbiota has a vital role in induction and regulation of local and systemic immune responses. On the other hand, the immune system involves maintaining microbiota compositions. Optimal microbiota-immune system cross-talk is essential for protective responses to pathogens and immune tolerance to self and harmless environmental antigens. Any change in this symbiotic relationship may cause susceptibility to diseases. The association of various cancers and auto-immune diseases with microbiota has been proven. Here we review the interaction of immune responses to gut microbiota, focusing on innate and adaptive immune system and disease susceptibility.

  • 1.

    Clemente JC , Ursell LK , Parfrey LW , Knight R . The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148: 12581270. https://doi.org/10.1016/j.cell.2012.01.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Dzutsev A , Badger JH , Perez-Chanona E , Roy S , Salcedo R , Smith CK , et al.. Microbes and Cancer. Annu Rev Immunol 2017; 35: 199228. https://doi.org/10.1146/annurev-immunol-051116-052133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Belkaid Y , Hand TW . Role of the microbiota in immunity and inflammation. Cell 2014; 157: 121141. https://doi.org/10.1016/j.cell.2014.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Blekhman R , Goodrich JK , Huang K , Sun Q , Bukowski R , Bell JT , et al.. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 2015; 16: 191. https://doi.org/10.1186/s13059-015-0759-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Flandroy L , Poutahidis T , Berg G , Clarke G , Dao M-C , Decaestecker E , et al.. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ 2018; 627: 10181038. https://doi.org/10.1016/j.scitotenv.2018.01.288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Zheng D , Liwinski T , Elinav E . Interaction between microbiota and immunity in health and disease. Cell Res. 2020; 30: 492506. https://doi.org/10.1038/s41422-020-0332-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Belkaid Y , Harrison OJ . Homeostatic immunity and the microbiota. Immunity 2017; 46: 562576. https://doi.org/10.1016/j.immuni.2017.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Levy M , Blacher E , Elinav E . Microbiome, metabolites and host immunity. Curr Opin Microbiol 2017; 35: 815. https://doi.org/10.1016/j.mib.2016.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Wen L , Ley RE , Volchkov PV , Stranges PB , Avanesyan L , Stonebraker AC , et al.. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455: 11091113. https://doi.org/10.1038/nature07336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Chassaing B , Ley RE , Gewirtz AT . Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology 2014; 147: 13631377.e17. https://doi.org/10.1053/j.gastro.2014.08.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Carvalho FA , Koren O , Goodrich JK , Johansson MEV , Nalbantoglu I , Aitken JD , et al.. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 2012; 12: 139152. https://doi.org/10.1016/j.chom.2012.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Vijay-Kumar M , Aitken JD , Carvalho FA , Cullender TC , Mwangi S , Srinivasan S , et al.. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010; 328: 228231. https://doi.org/10.1126/science.1179721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Vijay-Kumar M , Sanders CJ , Taylor RT , Kumar A , Aitken JD , Sitaraman SV , et al.. Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 2007; 117: 39093921. https://doi.org/10.1172/JCI33084.

    • Search Google Scholar
    • Export Citation
  • 14.

    Valentini M , Piermattei A , Di Sante G , Migliara G , Delogu G , Ria F . Immunomodulation by gut microbiota: role of Toll-like receptor expressed by T cells. J Immunol Res 2014; 2014: 586939. https://doi.org/10.1155/2014/586939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Lee J , Mo J-H , Katakura K , Alkalay I , Rucker AN , Liu Y-T , et al.. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 2006; 8: 13271336. https://doi.org/10.1038/ncb1500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Round JL , Lee SM , Li J , Tran G , Jabri B , Chatila TA , et al.. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332: 974977. https://doi.org/10.1126/science.1206095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Zou S , Fang L , Lee M-H . Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep 2018; 6: 112. https://doi.org/10.1093/gastro/gox031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Dalby MJ , Aviello G , Ross AW , Walker AW , Barrett P , Morgan PJ . Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamic expression of the acute phase protein, SerpinA3N. Sci Rep 2018; 8. https://doi.org/10.1038/s41598-018-33928-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bereswill S , Kühl AA , Alutis M , Fischer A , Möhle L , Struck D , et al.. The impact of Toll-like-receptor-9 on intestinal microbiota composition and extra-intestinal sequelae in experimental Toxoplasma gondii induced ileitis. Gut Pathog 2014; 6: 19. https://doi.org/10.1186/1757-4749-6-19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Ubeda C , Lipuma L , Gobourne A , Viale A , Leiner I , Equinda M , et al.. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med 2012; 209: 14451456. https://doi.org/10.1084/jem.20120504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Moreira LO , Zamboni DS . NOD1 and NOD2 signaling in infection and inflammation. Front Immunol 2012; 3. https://doi.org/10.3389/fimmu.2012.00328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bouskra D , Brézillon C , Bérard M , Werts C , Varona R , Boneca IG , et al.. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008; 456: 507510. https://doi.org/10.1038/nature07450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Petnicki-Ocwieja T , Hrncir T , Liu Y-J , Biswas A , Hudcovic T , Tlaskalova-Hogenova H , et al.. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 2009; 106: 1581315818. https://doi.org/10.1073/pnas.0907722106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Robertson SJ , Zhou JY , Geddes K , Rubino SJ , Cho JH , Girardin SE , et al.. Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes 2013; 4: 222231. https://doi.org/10.4161/gmic.24373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lu W-G , Zou Y-F , Feng X-L , Yuan F-L , Gu Y-L , Li X , et al.. Association of NOD1 (CARD4) insertion/deletion polymorphism with susceptibility to IBD: a meta-analysis. World J Gastroenterol WJG 2010; 16: 43484356. https://doi.org/10.3748/wjg.v16.i34.4348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Li E , Hamm CM , Gulati AS , Sartor RB , Chen H , Wu X , et al.. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One 2012; 7: e26284. https://doi.org/10.1371/journal.pone.0026284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Glas J , Seiderer J , Tillack C , Pfennig S , Beigel F , Jürgens M , et al.. The NOD2 single nucleotide polymorphisms rs2066843 and rs2076756 are novel and common crohn’s disease susceptibility gene variants. PLoS One 2010; 5: e14466. https://doi.org/10.1371/journal.pone.0014466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Levy M , Thaiss CA , Zeevi D , Dohnalová L , Zilberman-Schapira G , Mahdi JA , et al.. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015; 163: 14281443. https://doi.org/10.1016/j.cell.2015.10.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Wlodarska M , Thaiss CA , Nowarski R , Henao-Mejia J , Zhang J-P , Brown EM , et al.. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014; 156: 10451059. https://doi.org/10.1016/j.cell.2014.01.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hu B , Elinav E , Huber S , Strowig T , Hao L , Hafemann A , et al.. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci USA 2013; 110: 98629867. https://doi.org/10.1073/pnas.1307575110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Elinav E , Strowig T , Kau AL , Henao-Mejia J , Thaiss CA , Booth CJ , et al.. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011; 145: 745757. https://doi.org/10.1016/j.cell.2011.04.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Mamantopoulos M , Ronchi F , Van Hauwermeiren F , Vieira-Silva S , Yilmaz B , Martens L , et al.. Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition. Immunity 2017; 47: 339348.e4. https://doi.org/10.1016/j.immuni.2017.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Seregin SS , Golovchenko N , Schaf B , Chen J , Pudlo NA , Mitchell J , et al.. NLRP6 protects IL10−/− mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Rep 2017; 19: 733745. https://doi.org/10.1016/j.celrep.2017.03.080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Levy M , Shapiro H , Thaiss CA , Elinav E . NLRP6: a multifaceted innate immune sensor. Trends Immunol 2017; 38: 248260. https://doi.org/10.1016/j.it.2017.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Salzman NH , Hung K , Haribhai D , Chu H , Karlsson-Sjöberg J , Amir E , et al.. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 2010; 11: 7683. https://doi.org/10.1038/ni.1825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Elphick D , Liddell S , Mahida YR . Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 2008; 172: 702713. https://doi.org/10.2353/ajpath.2008.070755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Wehkamp J , Salzman NH , Porter E , Nuding S , Weichenthal M , Petras RE , et al.. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 2005; 102: 1812918134. https://doi.org/10.1073/pnas.0505256102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Vaishnava S , Yamamoto M , Severson KM , Ruhn KA , Yu X , Koren O , et al.. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334: 255258. https://doi.org/10.1126/science.1209791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Honda M , Surewaard BGJ , Watanabe M , Hedrick CC , Lee W-Y , Brown K , et al.. Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome. Nat Commun 2020; 11: 1329. https://doi.org/10.1038/s41467-020-15068-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Kim M , Galan C , Hill AA , Wu W-J , Fehlner-Peach H , Song HW , et al.. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 2018; 49: 151163.e5. https://doi.org/10.1016/j.immuni.2018.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Diehl GE , Longman RS , Zhang J-X , Breart B , Galan C , Cuesta A , et al.. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 2013; 494: 116120. https://doi.org/10.1038/nature11809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Chang PV , Hao L , Offermanns S , Medzhitov R . The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014; 111: 22472252. https://doi.org/10.1073/pnas.1322269111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Ji J , Shu D , Zheng M , Wang J , Luo C , Wang Y , et al.. Microbial metabolite butyrate facilitates M2 macrophage polarization and function, Sci Rep 2016; 6: 24838. https://doi.org/10.1038/srep24838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Skelly AN , Sato Y , Kearney S , Honda K . Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 2019; 19: 305323. https://doi.org/10.1038/s41577-019-0144-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Zhang D , Chen G , Manwani D , Mortha A , Xu C , Faith JJ , et al.. Neutrophil ageing is regulated by the microbiome. Nature 2015; 525: 528532. https://doi.org/10.1038/nature15367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Clarke TB , Davis KM , Lysenko ES , Zhou AY , Yu Y , Weiser JN . Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16: 228231. https://doi.org/10.1038/nm.2087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Rescigno M , Urbano M , Valzasina B , Francolini M , Rotta G , Bonasio R , et al.. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2: 361367. https://doi.org/10.1038/86373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Konieczna P , Ferstl R , Ziegler M , Frei R , Nehrbass D , Lauener RP , et al.. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PLoS One 2013; 8: e62617. https://doi.org/10.1371/journal.pone.0062617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Rubic T , Lametschwandtner G , Jost S , Hinteregger S , Kund J , Carballido-Perrig N , et al.. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol 2008; 9: 12611269. https://doi.org/10.1038/ni.1657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Zheng Y , Valdez PA , Danilenko DM , Hu Y , Sa SM , Gong Q , et al.. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282289. https://doi.org/10.1038/nm1720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Hughes T , Becknell B , Freud AG , McClory S , Briercheck E , Yu J , et al.. Interleukin-1beta selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity 2010; 32: 803814. https://doi.org/10.1016/j.immuni.2010.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Qiu J , Guo X , Chen ZE , He L , Sonnenberg GF , Artis D , et al.. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 2013; 39: 386399. https://doi.org/10.1016/j.immuni.2013.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Sonnenberg GF , Monticelli LA , Alenghat T , Fung TC , Hutnick NA , Kunisawa J , et al.. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012; 336: 13211325. https://doi.org/10.1126/science.1222551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Zenewicz LA , Yin X , Wang G , Elinav E , Hao L , Zhao L , et al.. Interleukin-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J Immunol Baltim Md 2013; 1950(190): 53065312. https://doi.org/10.4049/jimmunol.1300016.

    • Search Google Scholar
    • Export Citation
  • 55.

    Clark E , Hoare C , Tanianis-Hughes J , Carlson GL , Warhurst G . Interferon γ induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft–mediated process. Gastroenterology 2005; 128: 12581267. https://doi.org/10.1053/j.gastro.2005.01.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Kubinak JL , Round JL . Do antibodies select a healthy microbiota? Nat Rev Immunol 2016; 16: 767774. https://doi.org/10.1038/nri.2016.114.

  • 57.

    Palm NW , de Zoete MR , Cullen TW , Barry NA , Stefanowski J , Hao L , et al.. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014; 158: 10001010. https://doi.org/10.1016/j.cell.2014.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Peterson DA , McNulty NP , Guruge JL , Gordon JI . IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007; 2: 328339. https://doi.org/10.1016/j.chom.2007.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Shulzhenko N , Morgun A , Hsiao W , Battle M , Yao M , Gavrilova O , et al.. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med 2011; 17: 15851593. https://doi.org/10.1038/nm.2505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Catanzaro JR , Strauss JD , Bielecka A , Porto AF , Lobo FM , Urban A , et al.. IgA-deficient humans exhibit gut microbiota dysbiosis despite production of compensatory IgM. BioRxiv 2018; 446724. https://doi.org/10.1101/446724.

    • Search Google Scholar
    • Export Citation
  • 61.

    Kim M , Qie Y , Park J , Kim CH . Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 2016; 20: 202214. https://doi.org/10.1016/j.chom.2016.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Tanoue T , Morita S , Plichta DR , Skelly AN , Suda W , Sugiura Y , et al.. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 2019; 565: 600605. https://doi.org/10.1038/s41586-019-0878-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Luu M , Weigand K , Wedi F , Breidenbend C , Leister H , Pautz S , et al.. Regulation of the effector function of CD8 + T cells by gut microbiota-derived metabolite butyrate. Sci Rep 2018; 8: 110. https://doi.org/10.1038/s41598-018-32860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Brown EM , Kenny DJ , Xavier RJ . Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu Rev Immunol 2019; 37: 599624. https://doi.org/10.1146/annurev-immunol-042718-041841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Sallusto F . Heterogeneity of human CD4(+) T cells against microbes. Annu Rev Immunol 2016; 34: 317334. https://doi.org/10.1146/annurev-immunol-032414-112056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Atarashi K , Suda W , Luo C , Kawaguchi T , Motoo I , Narushima S , et al.. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 2017; 358: 359365. https://doi.org/10.1126/science.aan4526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    von Moltke J , Ji M , Liang H-E , Locksley RM . Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 2016; 529: 221225. https://doi.org/10.1038/nature16161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Gerbe F , Jay P . Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune system. Mucosal Immunol 2016; 9: 13531359. https://doi.org/10.1038/mi.2016.68.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Atarashi K , Nishimura J , Shima T , Umesaki Y , Yamamoto M , Onoue M , et al.. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008; 455: 808812. https://doi.org/10.1038/nature07240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Ivanov II , Atarashi K , Manel N , Brodie EL , Shima T , Karaoz U , et al.. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485498. https://doi.org/10.1016/j.cell.2009.09.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Schnupf P , Gaboriau-Routhiau V , Sansonetti PJ , Cerf-Bensussan N . Segmented filamentous bacteria, Th17 inducers and helpers in a hostile world. Curr Opin Microbiol 2017; 35: 100109. https://doi.org/10.1016/j.mib.2017.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Tan TG , Sefik E , Geva-Zatorsky N , Kua L , Naskar D , Teng F , et al.. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A 2016; 113: E8141E8150. https://doi.org/10.1073/pnas.1617460113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Zielinski CE , Mele F , Aschenbrenner D , Jarrossay D , Ronchi F , Gattorno M , et al.. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 2012; 484: 514518. https://doi.org/10.1038/nature10957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Geuking MB , Cahenzli J , Lawson MAE , Ng DCK , Slack E , Hapfelmeier S , et al.. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011; 34: 794806. https://doi.org/10.1016/j.immuni.2011.03.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Park J , Kim M , Kang SG , Jannasch AH , Cooper B , Patterson J , et al.. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 2015; 8: 8093. https://doi.org/10.1038/mi.2014.44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Smith PM , Howitt MR , Panikov N , Michaud M , Gallini CA , Bohlooly-Y M , et al.. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569573. https://doi.org/10.1126/science.1241165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Round JL , Lee SM , Li J , Tran G , Jabri B , Chatila TA , et al.. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332: 974977. https://doi.org/10.1126/science.1206095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Round JL , Mazmanian SK . Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 2010; 107: 1220412209. https://doi.org/10.1073/pnas.0909122107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Kato LM , Kawamoto S , Maruya M , Fagarasan S . Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol Cell Biol 2014; 92: 4956. https://doi.org/10.1038/icb.2013.54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Kawamoto S , Maruya M , Kato LM , Suda W , Atarashi K , Doi Y , et al.. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 2014; 41: 152165. https://doi.org/10.1016/j.immuni.2014.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.41
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 138 0 0
Dec 2024 149 0 0
Jan 2025 169 0 0
Feb 2025 172 3 3
Mar 2025 257 0 0
Apr 2025 55 1 1
May 2025 0 0 0