Authors:
Κonstantina Kontopoulou Laboratory of Biopathology, General Hospital of Thessaloniki “G. Gennimatas”, Thessaloniki, Greece

Search for other papers by Κonstantina Kontopoulou in
Current site
Google Scholar
PubMed
Close
,
Georgios Meletis Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Georgios Meletis in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8750-513X
,
Styliani Pappa Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Styliani Pappa in
Current site
Google Scholar
PubMed
Close
,
Sofia Zotou Laboratory of Biopathology, General Hospital of Thessaloniki “G. Gennimatas”, Thessaloniki, Greece

Search for other papers by Sofia Zotou in
Current site
Google Scholar
PubMed
Close
,
Katerina Tsioka Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Katerina Tsioka in
Current site
Google Scholar
PubMed
Close
,
Panagiota Dimitriadou Laboratory of Biopathology, General Hospital of Thessaloniki “G. Gennimatas”, Thessaloniki, Greece

Search for other papers by Panagiota Dimitriadou in
Current site
Google Scholar
PubMed
Close
,
Eleni Antoniadou Intensive Care Unit, General Hospital of Thessaloniki “G. Gennimatas”, Thessaloniki, Greece

Search for other papers by Eleni Antoniadou in
Current site
Google Scholar
PubMed
Close
, and
Anna Papa Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Anna Papa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Bacterial carbapenem resistance, especially when mediated by transferable carbapenemases, is of important public health concern. An increased number of metallo-β-lactamase (MBL)-producing Klebsiella pneumoniae strains isolated in a tertiary hospital in Thessaloniki, Greece, called for further genetic investigation.

The study included 29 non-repetitive carbapenem resistant K. pneumoniae isolates phenotypically characterized as MBL-producers collected in a tertiary hospital in Greece. The isolates were screened for the detection of carbapenemase genes (K. pneumoniae carbapenemase (bla KPC), Verona-integron-encoded MBL-1 (bla VIM-1), imipenemase (bla IMP), oxacillinase-48 (bla OXA-48) and New Delhi MBL (bla NDM)). The genetic relationship of the isolates was determined by Random Amplified Polymorphic DNA (RAPD) analysis. The whole genome sequences (WGS) from two NDM-positive K. pneumoniae isolates were further characterized.

The presence of New Delhi MBL (bla NDM) gene was confirmed in all K. pneumoniae isolates, while bla KPC and bla VIM-1 genes were co-detected in one and two isolates, respectively. The RAPD analysis showed that the isolates were clustered into two groups. The whole genome sequence analysis of two K. pneumoniae isolates revealed that they belonged to the sequence type 11, they carried the bla NDM-1 gene, and exhibited differences in the number and type of the plasmids and the resistant genes.

All MBL-producing K. pneumoniae isolates of the study harbored a bla NDM gene, while WGS analysis revealed genetic diversity in resistance genes. Continuous surveillance is needed to detect the emergence of new clones in a hospital setting, while application of antimicrobial stewardship is the only way to reduce the spread of multi-resistant bacteria.

  • 1.

    Patel G , Bonomo RA . “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol 2013; 4: 48. https://doi.org/10.3389/fmicb.2013.00048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Meletis G . Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis 2016; 3: 1521. https://doi.org/10.1177/2049936115621709.

    • Search Google Scholar
    • Export Citation
  • 3.

    Bush K , Bradford PA . Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev 2020; 33: e0004719. https://doi.org/10.1128/CMR.00047-19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Nordmann P , Poirel L , Walsh TR , Livermore DM . The emerging NDM carbapenemases. Trends Microbiol 2011; 19: 58895. https://doi.org/10.1016/j.tim.2011.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Dortet L , Poirel L , Nordmann P . Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int 2014; 2014: 249856. https://doi.org/10.1155/2014/249856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Johnson AP , Woodford N . Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 2013; 62: 499513. https://doi.org/10.1099/jmm.0.052555-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Rubin JE , Peirano G , Peer AK , Govind CN , Pitout JD . NDM-1-producing Enterobacteriaceae from South Africa: moving towards endemicity? Diagn Microbiol Infect Dis 2014; 79: 37880. https://doi.org/10.1016/j.diagmicrobio.2014.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Livermore DM , Walsh TR , Toleman M , Woodford N . Balkan NDM-1: escape or transplant? Lancet Infect Dis 2011; 11: 164. https://doi.org/10.1016/S1473-3099(11)70048-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    European Centre for Disease Prevention and Control . Antimicrobial resistance in the EU/EEA (EARS-Net) – annual epidemiological report 2019. Stockholm: ECDC; 2020.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bassetti M , Giacobbe DR , Giamarellou H , Viscoli C , Daikos GL , Dimopoulos G , et al.. Management of KPC-producing Klebsiella pneumoniae infections. Clin Microbiol Infect 2018; 24: 13344. https://doi.org/10.1016/j.cmi.2017.08.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Girmenia C , Serrao A , Canichella M . Epidemiology of carbapenem resistant Klebsiella pneumoniae infections in Mediterranean countries. Mediterr J Hematol Infect Dis 2016; 8: e2016032. https://doi.org/10.4084/MJHID.2016.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Voulgari E , Gartzonika C , Vrioni G , Politi L , Priavali E , Levidiotou-Stefanou S , et al.. The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J Antimicrob Chemother 2014; 69: 20917. https://doi.org/10.1093/jac/dku105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Giakkoupi P , Tryfinopoulou K , Kontopidou F , Tsonou P , Golegou T , Souki H , et al.. Emergence of NDM-producing Klebsiella pneumoniae in Greece. Diagn Microbiol Infect Dis 2013; 77: 3824. https://doi.org/10.1016/j.diagmicrobio.2013.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Papagiannitsis CC , Malli E , Florou Z , Sarrou S , Hrabak J , Mantzarlis K , et al.. Emergence of sequence type 11 Klebsiella pneumoniae coproducing NDM-1 and VIM-1 metallo-β-lactamases in a Greek hospital. Diagn Microbiol Infect Dis 2017; 87: 2957. https://doi.org/10.1016/j.diagmicrobio.2016.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Protonotariou E , Meletis G , Chatzopoulou F , Malousi A , Chatzidimitriou D , Skoura L . Emergence of Klebsiella pneumoniae ST11 co-producing NDM-1 and OXA-48 carbapenemases in Greece. J Glob Antimicrob Resist 2019; 19: 812. https://doi.org/10.1016/j.jgar.2019.08.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Meletis G , Chatzopoulou F , Chatzidimitriou D , Tsingerlioti F , Botziori C , Tzimagiorgis G , et al.. Whole genome sequencing of NDM-1-producing ST11 Klebsiella pneumoniae isolated in a private laboratory in Greece. Microb Drug Resist 2019; 25: 806. https://doi.org/10.1089/mdr.2017.0411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Spyropoulou A , Bartzavali C , Vamvakopoulou S , Marangos M , Anastassiou ED , Spiliopoulou I , et al.. The first NDM metallo-β-lactamase producing Klebsiella pneumoniae isolate in a University Hospital of Southwestern Greece. J Chemother 2016; 28: 3501. https://doi.org/10.1179/1973947815Y.0000000003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Tsakris A , Poulou A , Pournaras S , Voulgari E , Vrioni G , Themeli-Digalaki K , et al.. A simple phenotypic method for the differentiation of metallo-beta-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J Antimicrob Chemother 2010; 65: 166471. https://doi.org/10.1093/jac/dkq210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hatrongjit R , Kerdsin A , Akeda Y , Hamada S . Detection of plasmid-mediated colistin-resistant and carbapenem-resistant genes by multiplex PCR. MethodsX 2018; 5: 5326. https://doi.org/10.1016/j.mex.2018.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Tsakris A , Pournaras S , Woodford N , Palepou MF , Babini GS , Douboyas J , et al.. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J Clin Microbiol 2000; 38: 12902. https://doi.org/10.1128/JCM.38.3.1290-1292.2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Saadatian Farivar A , Nowroozi J , Eslami G , Sabokbar A . RAPD PCR profile, antibiotic resistance, prevalence of armA gene, and detection of KPC enzyme in Klebsiella pneumoniae isolates. Can J Infect Dis Med Microbiol 2018; 2018: 6183162. https://doi.org/10.1155/2018/6183162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Camacho C , Coulouris G , Avagyan V , Ma N , Papadopoulos J , Bealer K , et al.. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10: 421. https://doi.org/10.1186/1471-2105-10-421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Larsen MV , Cosentino S , Rasmussen S , Friis C , Hasman H , Marvig RL , et al.. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 2012; 50: 135561. https://doi.org/10.1128/JCM.06094-11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Clausen P , Aarestrup FM , Lund O . Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 2018; 19: 307. https://doi.org/10.1186/s12859-018-2336-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Alcock BP , Raphenya AR , Lau TTY , Tsang KK , Bouchard M , Edalatmand A , et al.. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48(D1): D51725. https://doi.org/10.1093/nar/gkz935.

    • Search Google Scholar
    • Export Citation
  • 26.

    Carattoli A , Zankari E , García-Fernández A , Larsen MV , Lund O , Villa L , et al.. In silico detection and typing of plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob Agents Chemother 2014; 58: 3895903. https://doi.org/10.1128/AAC.02412-14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Karampatakis T , Antachopoulos C , Iosifidis E , Tsakris A , Roilides E . Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in Greece. Future Microbiol 2016; 11: 80923. https://doi.org/10.2217/fmb-2016-0042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Meletis G , Chatzidimitriou D , Malisiovas N . Double- and multi-carbapenemase-producers: the excessively armored bacilli of the current decade. Eur J Clin Microbiol Infect Dis 2015; 34: 148793. https://doi.org/10.1007/s10096-015-2379-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Pitout JDD , Nordmann P , Poirel L . Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 2015; 59: 587384. https://doi.org/10.1128/AAC.01019-15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Politi L , Gartzonika K , Spanakis N , Zarkotou O , Poulou A , Skoura L , et al.. Emergence of NDM-1-producing Klebsiella pneumoniae in Greece: evidence of a widespread clonal outbreak. J Antimicrob Chemother 2019; 74: 2197202. https://doi.org/10.1093/jac/dkz176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Spyropoulou A , Papadimitriou-Olivgeris M , Bartzavali C , Vamvakopoulou S , Marangos M , Spiliopoulou I , et al.. A ten-year surveillance study of carbapenemase-producing Klebsiella pneumoniae in a tertiary care Greek university hospital: predominance of KPC- over VIM- or NDM-producing isolates. J Med Microbiol 2016; 65: 2406. https://doi.org/10.1099/jmm.0.000217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Galani I , Karaiskos I , Karantani I , Papoutsaki V , Maraki S , Papaioannou V , et al.. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Euro Surveill 2014; 23. https://doi.org/10.2807/1560-7917.ES.2018.23.30.1700775.

    • Search Google Scholar
    • Export Citation
  • 33.

    Papadimitriou-Olivgeris M , Bartzavali C , Lambropoulou A , Solomou A , Tsiata E , Anastassiou ED , et al.. Reversal of carbapenemase-producing Klebsiella pneumoniae epidemiology from blaKPC- to blaVIM-harbouring isolates in a Greek ICU after introduction of ceftazidime/avibactam. J Antimicrob Chemother 2019; 74: 20514. https://doi.org/10.1093/jac/dkz125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Protonotariou E , Meletis G , Kachrimanidou M , Papadopoulou D , Stamou A , Arhonti M , et al.. In vitro activity of ceftazidime/avibactam against KPC-producing Klebsiella pneumoniae in Greece: a single-centre study. J Glob Antimicrob Resist 2020; 20: 823. https://doi.org/10.1016/j.jgar.2019.11.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Kontopoulou K , Iosifidis E , Antoniadou E , Tasioudis P , Petinaki E , Malli E , et al.. The clinical significance of carbapenem-resistant Klebsiella pneumoniae rectal colonization in critically ill patients: from colonization to bloodstream infection. J Med Microbiol 2019; 68: 32635. https://doi.org/10.1099/jmm.0.000921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Rozwandowicz M , Brouwer MSM , Fischer J , Wagenaar JA , Gonzalez-Zorn B , Guerra B , et al.. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2018; 73: 112137. https://doi.org/10.1093/jac/dkx488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Robicsek A , Strahilevitz J , Jacoby GA , Macielag M , Abbanat D , Park CH , et al.. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006; 12: 838. https://doi.org/10.1038/nm1347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Almaghrabi R , Clancy CJ , Doi Y , Hao B , Chen L , Shields RK , et al.. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother 2014; 58: 444351. https://doi.org/10.1128/AAC.00099-14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 52 0 0
Jul 2022 32 1 0
Aug 2022 71 0 0
Sep 2022 43 0 0
Oct 2022 20 0 0
Nov 2022 17 0 0
Dec 2022 0 0 0