Authors:
Ava Behrouzi Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Ava Behrouzi in
Current site
Google Scholar
PubMed
Close
,
Asal Katebi Department of Immunology, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Asal Katebi in
Current site
Google Scholar
PubMed
Close
,
Farhad Riazi-Rad Department of Immunology, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Farhad Riazi-Rad in
Current site
Google Scholar
PubMed
Close
,
Hoora Mazaheri Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Hoora Mazaheri in
Current site
Google Scholar
PubMed
Close
, and
Soheila Ajdary Department of Immunology, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Soheila Ajdary in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5052-2523
Restricted access

Abstract

Cancer is a multifactorial disease that is the second leading cause of death after cardiovascular disease in the world. In recent years, microbiota’s role in the regulation and homeostasis of the immune system has been considered. Moreover, the immune system can affect the microbiota content. These interactions are critical to the functioning of the immune system. Numerous studies in animal and human models have shown the association of changes in microbiota components with the formation of an inhibitory microenvironment in the tumor and its escape from the immune system. Microbiota also plays a crucial role in the success of various anti-tumor treatments, and its modification leads to success in cancer treatment. The success of anti-tumor therapies that directly target the immune system, such as immune checkpoint blockade and T cell therapy, is also affected by the patient’s microbiota composition. It seems that in addition to examining the patient’s genetics, precision medicine should pay attention to the patient’s microbiota in choosing the appropriate treatment method, and together with usual anti-tumor therapies, microbiota may be modified. This review discusses various aspects of the relationship between microbiota and anti-tumor immunity and its successful treatment.

  • 1.

    Elinav E , Nowarski R , Thaiss CA , Hu B , Jin C , Flavell RA . Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 2013 Nov; 13(11): 759771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Medzhitov R . Origin and physiological roles of inflammation. Nature 2008 Jul 24; 454(7203): 428435.

  • 3.

    Martel C de , Ferlay J , Franceschi S , Vignat J , Bray F , Forman D , et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012 Jun 1; 13(6): 607615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Kallmeyer J , Pockalny R , Adhikari RR , Smith DC , D’Hondt S . Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci U S A 2012 Oct 2; 109(40): 1621316216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Blaser MJ . Understanding microbe-induced cancers. Cancer Prev Res Phila Pa 2008 Jun; 1(1): 1520.

  • 6.

    Ojesina AI , Lichtenstein L , Freeman SS , Pedamallu CS , Imaz-Rosshandler I , Pugh TJ , et al. Landscape of genomic alterations in cervical carcinomas. Nature 2014 Feb 20; 506(7488): 371375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Guerra L , Guidi R , Frisan T . Do bacterial genotoxins contribute to chronic inflammation, genomic instability and tumor progression? FEBS J 2011 Dec; 278(23): 45774588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Goodwin AC , Destefano Shields CE , Wu S , Huso DL , Wu X , Murray-Stewart TR , et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A 2011 Sep 13; 108(37): 1535415359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Thompson MP , Kurzrock R . Epstein-Barr virus and cancer. Clin Cancer Res Off J Am Assoc Cancer Res 2004 Feb 1; 10(3): 803821.

  • 10.

    Abreu MT , Peek RM . Gastrointestinal malignancy and the microbiome. Gastroenterology 2014 May; 146(6): 153446.e3.

  • 11.

    Hanahan D , Weinberg RA . The hallmarks of cancer. Cell 2000 Jan 7; 100(1): 5770.

  • 12.

    Kostic AD , Chun E , Robertson L , Glickman JN , Gallini CA , Michaud M , et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013 Aug 14; 14(2): 207215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Pikarsky E , Porat RM , Stein I , Abramovitch R , Amit S , Kasem S , et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004 Sep 23; 431(7007): 461466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Yu H , Pardoll D , Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009 Nov; 9(11): 798809.

  • 15.

    Broder CC , Collman RG . Chemokine receptors and HIV. J Leukoc Biol 1997 Jul; 62(1): 2029.

  • 16.

    Knight SC , Macatonia SE , Patterson S . HIV I infection of dendritic cells. Int Rev Immunol 1990; 6(2–3): 163175.

  • 17.

    Garrett WS . Cancer and the microbiota. Science 2015 Apr 3; 348(6230): 8086.

  • 18.

    Yuan L , Zhang S , Li H , Yang F , Mushtaq N , Ullah S , et al. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed Pharmacother Biomedecine Pharmacother 2018 Dec; 108: 184193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Schwabe RF , Jobin C . The microbiome and cancer. Nat Rev Cancer 2013 Nov; 13(11): 800812.

  • 20.

    Whisner CM , Athena Aktipis C . The role of the microbiome in cancer initiation and progression: How microbes and cancer cells utilize excess energy and promote one another’s growth. Curr Nutr Rep 2019 Mar 1; 8(1): 4251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Belkaid Y , Hand TW . Role of the microbiota in immunity and inflammation. Cell 2014 Mar 27; 157(1): 121141.

  • 22.

    Zhou B , Sun C , Huang J , Xia M , Guo E , Li N , et al. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci Rep 2019 Feb 8; 9(1): 1691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Wang H , Funchain P , Bebek G , Altemus J , Zhang H , Niazi F , et al. Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas. Genome Med [Internet] 2017 Feb 7; 9. [cited 2019 May 9]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297129/.

    • Search Google Scholar
    • Export Citation
  • 24.

    Russo E , Bacci G , Chiellini C , Fagorzi C , Niccolai E , Taddei A , et al. Preliminary comparison of oral and intestinal human microbiota in patients with colorectal cancer: a pilot study. Front Microbiol [Internet] 2018; 8. [cited 2019 May 9]. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2017.02699/full.

    • Search Google Scholar
    • Export Citation
  • 25.

    Flemer B , Lynch DB , Brown JMR , Jeffery IB , Ryan FJ , Claesson MJ , et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 2017 Apr 1; 66(4): 633643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Zhuang H , Cheng L , Wang Y , Zhang Y-K , Zhao M-F , Liang G-D , et al. Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol [Internet] 2019; 9. [cited 2019 May 9]. Available from: https://www.frontiersin.org/articles/10.3389/fcimb.2019.00112/full.

    • Search Google Scholar
    • Export Citation
  • 27.

    Fernández MF , Reina-Pérez I , Astorga JM , Rodríguez-Carrillo A , Plaza-Díaz J , Fontana L . Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health [Internet] 2018 Aug; 15(8). [cited 2019 May 9]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121903/.

    • Search Google Scholar
    • Export Citation
  • 28.

    Bullman S , Pedamallu CS , Sicinska E , Clancy TE , Zhang X , Cai D , et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017 15; 358(6369): 14431448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Schreiber RD , Old LJ , Smyth MJ . Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011 Mar 25; 331(6024): 15651570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Dunn GP , Old LJ , Schreiber RD . The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22: 329360.

  • 31.

    Whiteside TL . Immune responses to malignancies. J Allergy Clin Immunol 2010 Feb; 125(2 Suppl 2): S272S283.

  • 32.

    Smyth MJ , Dunn GP , Schreiber RD . Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006; 90: 150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Oikonomopoulou K , Brinc D , Kyriacou K , Diamandis EP . Infection and cancer: revaluation of the hygiene hypothesis. Clin Cancer Res 2013 Jun 1; 19(11): 28342841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Vujanovic L , Mandic M , Olson WC , Kirkwood JM , Storkus WJ . A Mycoplasma peptide elicits heteroclitic CD4+ T cell responses against tumor antigen MAGE-A6. Clin Cancer Res 2007 Nov 15; 13(22): 67966806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Vétizou M , Pitt JM , Daillère R , Lepage P , Waldschmitt N , Flament C , et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015 Nov 27; 350(6264): 10791084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Zitvogel L , Ayyoub M , Routy B , Kroemer G . Microbiome and anticancer immunosurveillance. Cell 2016 Apr 7; 165(2): 276287.

  • 37.

    Wilson HL , Obradovic MR . Evidence for a common mucosal immune system in the pig. Mol Immunol 2015 Jul 1; 66(1): 2234.

  • 38.

    Wheeler R , Chevalier G , Eberl G , Gomperts Boneca I . The biology of bacterial peptidoglycans and their impact on host immunity and physiology. Cell Microbiol 2014 Jul 1; 16(7): 10141023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Souza DG , Vieira AT , Soares AC , Pinho V , Nicoli JR , Vieira LQ , et al. The essential role of the intestinal microbiota in facilitating acute inflammatory responses. J Immunol 2004 Sep 15; 173(6): 41374146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Ganal SC , Sanos SL , Kallfass C , Oberle K , Johner C , Kirschning C , et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012 Jul 27; 37(1): 171186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Paulos CM , Wrzesinski C , Kaiser A , Hinrichs CS , Chieppa M , Cassard L , et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 2007 Aug; 117(8): 21972204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Rutkowski MR , Stephen TL , Svoronos N , Allegrezza MJ , Tesone AJ , Perales-Puchalt A , et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 2015 Jan 12; 27(1): 2740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Gagliani N , Hu B , Huber S , Elinav E , Flavell RA . The fire within: microbes inflame tumors. Cell 2014 May 8; 157(4): 776783.

  • 44.

    Muranski P , Boni A , Antony PA , Cassard L , Irvine KR , Kaiser A , et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 2008 Jul 15; 112(2): 362373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Grivennikov SI , Wang K , Mucida D , Stewart CA , Schnabl B , Jauch D , et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012 Nov 8; 491(7423): 254258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Chae W-J , Gibson TF , Zelterman D , Hao L , Henegariu O , Bothwell ALM . Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc Natl Acad Sci U S A 2010 Mar 23; 107(12): 55405544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Chae W-J , Bothwell ALM . Spontaneous intestinal tumorigenesis in Apc (/Min+) mice requires altered T cell development with IL-17A. J Immunol Res 2015; 2015: 860106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Honda K , Littman DR . The microbiome in infectious disease and inflammation. Annu Rev Immunol 2012; 30: 759795.

  • 49.

    Scheiermann J , Klinman DM . Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine 2014 Nov 12; 32(48): 63776389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Vicari AP , Chiodoni C , Vaure C , Aït-Yahia S , Dercamp C , Matsos F , et al. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti–interleukin 10 receptor antibody. J Exp Med 2002 Aug 19; 196(4): 541549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Iida N , Dzutsev A , Stewart CA , Smith L , Bouladoux N , Weingarten RA , et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013 Nov 22; 342(6161): 967970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Perez-Chanona E , Trinchieri G . The role of microbiota in cancer therapy. Curr Opin Immunol 2016 Apr; 39: 7581.

  • 53.

    Madondo MT , Quinn M , Plebanski M . Low dose cyclophosphamide: mechanisms of T cell modulation. Cancer Treat Rev 2016 Jan 1; 42: 39.

  • 54.

    Kroemer G , Galluzzi L , Kepp O , Zitvogel L . Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31: 5172.

  • 55.

    Viaud S , Saccheri F , Mignot G , Yamazaki T , Daillère R , Hannani D , et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013 Nov 22; 342(6161): 971976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Nichols RG , Peters JM , Patterson AD . Interplay between the host, the human microbiome, and drug metabolism. Hum Genomics 2019 Jun 11; 13(1): 27.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Scott TA , Quintaneiro LM , Norvaisas P , Lui PP , Wilson MP , Leung K-Y , et al. Host-microbe Co-metabolism dictates cancer drug efficacy in C. elegans. Cell 2017 Apr 20; 169(3): 442456.e18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    García-González AP , Ritter AD , Shrestha S , Andersen EC , Yilmaz LS , Walhout AJM . Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell 2017 20; 169(3): 431441.e8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Yuan L , Zhang S , Li H , Yang F , Mushtaq N , Ullah S , et al. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed Pharmacother Biomedecine Pharmacother 2018 Dec; 108: 184193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Gopalakrishnan V , Helmink BA , Spencer CN , Reuben A , Wargo JA . The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018 09; 33(4): 570580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Chaput N , Lepage P , Coutzac C , Soularue E , Le Roux K , Monot C , et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol Off J Eur Soc Med Oncol 2017 Jun 1; 28(6): 13681379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Frankel AE , Coughlin LA , Kim J , Froehlich TW , Xie Y , Frenkel EP , et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 2017 Oct 1; 19(10): 848855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Gopalakrishnan V , Spencer CN , Nezi L , Reuben A , Andrews MC , Karpinets TV , et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018 05; 359(6371): 97103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Matson V , Fessler J , Bao R , Chongsuwat T , Zha Y , Alegre M-L , et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018 05; 359(6371): 104108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Routy B , Le Chatelier E , Derosa L , Duong CPM , Alou MT , Daillère R , et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018 Jan 5; 359(6371): 9197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Uribe-Herranz M , Bittinger K , Rafail S , Guedan S , Pierini S , Tanes C , et al. Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12. JCI Insight 2018 Feb 22; 3(4).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Smith M , Littmann E , Slingerland J , Clurman A , Slingerland AE , Taur Y , et al. Intestinal microbiome analyses identify biomarkers for patient response to CAR T cell therapy. Biol Blood Marrow Transpl 2019 Mar 1; 25(Suppl. 3): S177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Kuntz TM , Gilbert JA . Introducing the microbiome into precision medicine. Trends Pharmacol Sci 2017; 38(1): 8191.

  • 69.

    Behrouzi A , Nafari AH , Siadat SD . The significance of microbiome in personalized medicine. Clin Transl Med 2019 May 13; 8(1): 16.

  • 70.

    Eckert R , He J , Yarbrough DK , Qi F , Anderson MH , Shi W . Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob Agents Chemother 2006 Nov 1; 50(11): 36513657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Cieplak T , Soffer N , Sulakvelidze A , Nielsen DS . A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes 2018 Aug 24; 9(5): 391399.

    • Search Google Scholar
    • Export Citation
  • 72.

    Hill C , Guarner F , Reid G , Gibson GR , Merenstein DJ , Pot B , et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014 Aug; 11(8): 506514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Makras L , Triantafyllou V , Fayol-Messaoudi D , Adriany T , Zoumpopoulou G , Tsakalidou E , et al. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol 2006 Apr; 157(3): 241247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Rossi M , Mirbagheri S , Keshavarzian A , Bishehsari F . Nutraceuticals in colorectal cancer: a mechanistic approach. Eur J Pharmacol 2018 Aug 15; 833: 396402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Ambalam P , Raman M , Purama RK , Doble M . Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol 2016 Feb; 30(1): 119131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Goldin BR , Gorbach SL . The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. Am J Clin Nutr 1984 May; 39(5): 756761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Morotomi M , Mutai M . In vitro binding of potent mutagenic pyrolysates to intestinal bacteria. J Natl Cancer Inst 1986 Jul; 77(1): 195201.

    • Search Google Scholar
    • Export Citation
  • 78.

    Pithva SP , Ambalam PS , Ramoliya JM , Dave JM , Vyas BRM . Antigenotoxic and antimutagenic activities of probiotic Lactobacillus rhamnosus Vc against N-Methyl-N’-Nitro-N-Nitrosoguanidine. Nutr Cancer 2015; 67(7): 11421150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Kumar A , Singh NK , Sinha PR . Inhibition of 1,2-dimethylhydrazine induced colon genotoxicity in rats by the administration of probiotic curd. Mol Biol Rep 2010 Mar; 37(3): 13731376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Nowak A , Kuberski S , Libudzisz Z . Probiotic lactic acid bacteria detoxify N-nitrosodimethylamine. Food Addit Contam Part Chem Anal Control Expo Risk Assess 2014; 31(10): 16781687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Horie H , Zeisig M , Hirayama K , Midtvedt T , Möller L , Rafter J . Probiotic mixture decreases DNA adduct formation in colonic epithelium induced by the food mutagen 2-amino-9H-pyrido[2,3-b]indole in a human-flora associated mouse model. Eur J Cancer Prev Off J Eur Cancer Prev Organ ECP 2003 Apr; 12(2): 101107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Orrhage K , Sillerström E , Gustafsson JA , Nord CE , Rafter J . Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res 1994 Dec 1; 311(2): 239248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Gamallat Y , Meyiah A , Kuugbee ED , Hago AM , Chiwala G , Awadasseid A , et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother Biomedecine Pharmacother 2016 Oct; 83: 536541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Kuugbee ED , Shang X , Gamallat Y , Bamba D , Awadasseid A , Suliman MA , et al. Structural change in microbiota by a probiotic cocktail enhances the gut barrier and reduces cancer via TLR2 signaling in a rat model of colon cancer. Dig Dis Sci 2016; 61(10): 29082920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Ma EL , Choi YJ , Choi J , Pothoulakis C , Rhee SH , Im E . The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer 2010 Aug 15; 127(4): 780790.

    • Search Google Scholar
    • Export Citation
  • 86.

    Kim H-S , Park H , Cho I-Y , Paik H-D , Park E . Dietary supplementation of probiotic Bacillus polyfermenticus, Bispan strain, modulates natural killer cell and T cell subset populations and immunoglobulin G levels in human subjects. J Med Food 2006; 9(3): 321327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Manuzak JA , Hensley-McBain T , Zevin AS , Miller C , Cubas R , Agricola B , et al. Enhancement of microbiota in healthy macaques results in beneficial modulation of mucosal and systemic immune function. J Immunol Baltim Md 1950 2016 Mar 1; 196(5): 24012409.

    • Search Google Scholar
    • Export Citation
  • 88.

    Chen D , Wu J , Jin D , Wang B , Cao H . Fecal microbiota transplantation in cancer management: current status and perspectives. Int J Cancer 2019 Oct 15; 145(8): 20212031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Enforcement policy regarding investigational new drug requirements for use of fecal microbiota for transplantation to treat Clostridium difficile infection not responsive to standard therapies -- draft guidance for industry: 6.

    • Search Google Scholar
    • Export Citation
  • 90.

    Rosshart SP , Vassallo BG , Angeletti D , Hutchinson DS , Morgan AP , Takeda K , et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 2017 Nov 16; 171(5): 10151028.e13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Kao D , Roach B , Park H , Hotte N , Madsen K , Bain V , et al. Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatol Baltim Md 2016 Jan; 63(1): 339340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Cui M , Xiao H , Li Y , Zhou L , Zhao S , Luo D , et al. Faecal microbiota transplantation protects against radiation‐induced toxicity. EMBO Mol Med 2017 Apr; 9(4): 448461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Bastard QL , Ward T , Sidiropoulos D , Hillmann BM , Chun CL , Sadowsky MJ , et al. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep 2018 Apr 18; 8(1): 111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Suez J , Zmora N , Zilberman-Schapira G , Mor U , Dori-Bachash M , Bashiardes S , et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 2018 06; 174(6): 14061423.e16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 53 1 2
Jul 2022 34 1 2
Aug 2022 32 2 1
Sep 2022 46 1 1
Oct 2022 44 2 2
Nov 2022 30 0 0
Dec 2022 0 0 0