Authors:
A. Suneel Kumar Department of Microbiology, Rajiv Gandhi Institute of Medical Sciences (RIMS), Government Medical College & Hospital, Kadapa, Andhra Pradesh, India
Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India

Search for other papers by A. Suneel Kumar in
Current site
Google Scholar
PubMed
Close
,
A.S. Smiline Girija Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India

Search for other papers by A.S. Smiline Girija in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6106-0064
, and
B. Naga Srilatha Department of Microbiology, Rajiv Gandhi Institute of Medical Sciences (RIMS), Government Medical College & Hospital, Kadapa, Andhra Pradesh, India

Search for other papers by B. Naga Srilatha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Methicillin-resistant coagulase-negative staphylococci (MR-CoNS) cause infectious diseases due to their potential to form biofilm and further colonization in hospital materials. This study evaluated the antibiotic susceptible phenotypes, biofilm-producing ability, and biofilm-associated genes (mecA, icaAD, bap, cna, and fnbA). Biofilm formation was detected through Congo red agar (CRA) method and MTP method. The presence of biofilm and associated genes in MR-CoNS were detected by PCR. A total of 310 (55.95%) isolates produced the biofilm. Among these isolates, Staphylococcus haemolyticus (34.83%), Staphylococcus epidermis (31.93%), Staphylococcus capitis (16.77%), Staphylococcus cohnii (10.96%), and Staphylococcus hominis (5.48%) were identified. The antimicrobial susceptibility pattern of CoNS isolates indicated resistance to cefoxitin (100%), erythromycin (94.8%), ciprofloxacin (66.7%), sulfamethoxazole/trimethoprim (66.7%), gentamicin (66.12%), and clindamycin (62.9%). Resistance rate to mupirocin was 48.5% in S. epidermidis and 38.9% in S. haemolyticus isolates. All isolates were sensitive to vancomycin and linezolid.

The prevalence rates of icaAD, bap, fnbA, and cna were 18.06%, 12.5%, 47.4%, and 27.4%, respectively. icaAD and bap genes were detected in 18.06% and 12.5% of MR-CoNS isolates. fnbA and cna genes were detected in 47.41% and 27.41% of MRCoNS isolates. icaAD positive strains exhibited a significant increase in the biofilm formation compared with those that lacked icaAD (0.86 (0.42, 1.39) versus 0.36 (0.14, 0.75), respectively; P < 0.001).

In conclusion, the majority of MR-CoNS isolates were biofilm producers, and S. capitis, which possessed icaAD genes, ranked as the great biofilm producer than other Staphylococcus. The study’s findings are important to form a strategy to control biofilm formation as an alternative strategy to counter the spread of MR-CoNS in healthcare settings.

  • 1.

    Saber H , Jasni AS , Jamaluddin TZ , Ibrahim R . A review of staphylococcal cassette chromosome mec (SCCmec) types in coagulase-negative staphylococci (CoNS) species. Malays J Med Sci 2017;24:718. https://doi.org/10.21315/mjms2017.24.5.2.

    • Search Google Scholar
    • Export Citation
  • 2.

    Piette A , Verschraegen GE . Role of coagulase-negative staphylococci in human disease. Vet Microbiol 2009 Feb 16;134(1–2):4554. https://doi.org/10.1016/j.vetmic.2008.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Morgenstern M , Erichsen C , Hackl S , Mily J , Militz M , Friederichs J , et al. Antibiotic resistance of commensal Staphylococcus aureus and coagulase-negative staphylococci in an international cohort of surgeons: a prospective point-prevalence study. PLoS One 2011;11(2):e0148437. https://doi.org/10.1371/journal.pone.0148437.

    • Search Google Scholar
    • Export Citation
  • 4.

    Stewart PS , Costerton JW . Antibiotic resistance of bacteria in biofilms. Lancet 2001;358(9276):135138. https://doi.org/10.1016/S0140-6736(01)05321-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Barros EM , Ceotto H , Bastos MC , Dos Santos KR , Giambiagi-Demarval M . Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol 2012;50:166168. https://doi.org/10.1128/JCM.05563-11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    García-Álvarez L , Holden MT , Lindsay H , Webb CR , Brown DF , Curran MD , et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 2011;11:595603. https://doi.org/10.1016/S1473-3099(11)70126-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Tulinski P , Fluit AC , Wagenaar JA , Mevius D , van de Vijver L , Duim B , et al. Methicillin-resistant coagulase-negative staphylococci on pig farms as a reservoir of heterogeneous staphylococcal cassette chromosome mec elements. Appl Environ Microbiol 2012;78:299304. https://doi.org/10.1128/AEM.05594-11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Maira-Litrán T , Kropec A , Abeygunawardana C , Joyce J , Mark G , Goldmann DA , et al. Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 2002 Aug 1;70(8):44334440. https://doi.org/10.1128/IAI.70.8.4433-4440.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Cucarella C , Tormo MA , Ubeda C , Trotonda MP , Monz M M , Peris C , et al. Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun 2004;72:21772185. https://doi.org/10.1128/IAI.72.4.2177-2185.2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Tormo MA , Knecht E , GE F , Lasa I , Penaden JR . Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 2005;151:24652475. https://doi.org/10.1099/mic.0.27865-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Herman-Bausier P , El-Kirat-Chatel S , Foster TJ , Geoghegan JA , Dufrfrf YF . Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. MBio 2015;6:e00413e00415. https://doi.org/10.1128/mBio.00413-15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kloos WE , Schleifer KH . Simplified scheme for routine identification of human staphylococcus species. J Clin Microbiol 1975;1(1):8288. https://doi.org/10.1128/jcm.1.1.82-88.1975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Clinical and Laboratory Standard Institute . Performance standard for antimicrobial disk susceptibility tests, Document no M100-S23. 23rd ed. Wayne: Clinical and Laboratory Standard Institute; 2013.

    • Search Google Scholar
    • Export Citation
  • 14.

    Kohner P , Uhl J , Kolbert C , Persing D , Cockerill F. 3rd Comparison of susceptibility testing methods with mecA gene analysis for determining oxacillin (methicillin) resistance in clinical isolates of Staphylococcus aureus and coagulase-negative Staphylococcus spp. J Clin Microbiol 1999;37:29522961. https://doi.org/10.1128/JCM.37.9.2952-2961.1999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Al Laham NA . Species identification of clinical coagulase-negative staphylococci isolated in Al-Shifa hospital Gaza using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Curr Res Bacteriol 2017;10:18. https://scialert.net/abstract/?doi=crb.2017.1.8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Loonen AJ , Jansz AR , Bergland JN , Valkenburg M , Wolffs PF , van den Brule AJ , et al. Comparative study using phenotypic, genotypic, and proteomics methods for identification of coagulase-negative staphylococci. J Clin Microbiol 2012;50:14371439. https://doi.org/10.1128/JCM.06746-11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Christensen GD , Simpson WA , Bisno AL , Beachey EH . Adherence of slimeproducing strains of Staphylococcus Epidermidis to smooth surfaces. Infect Immun 1982;37(1):318326. https://doi.org/10.1128/iai.37.1.318-326.1982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Freeman DJ , Falkiner FR , Keane CT . New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989;42(8). https://dx.doi.org/10.1136/jcp.42.8.872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Christensen GD , Simpson WA , Younger JJ , Baddour LM , Barrett FF , Melton DM , et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985;22(6):9961006. https://doi.org/10.1128/jcm.22.6.996-1006.1985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Seng R , Kitti T , Thummeepak R , Kongthai P , Leungtongkam U , Wannalerdsakun S , et al. Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-coNS) isolated from community and hospital environments. PLoS One 2017;12:e0184172. https://doi.org/10.1371/journal.pone.0184172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Verdayes AM , Perez LM , Paez AL , et al. Staphylococcus epidermidis with the icaA−/icaD−/IS256− genotype and protein or protein/extracellular-DNA biofilm is frequent in ocular infections. J Med Microbiol 2013;62:15791587. https://doi.org/10.1099/jmm.0.055210-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Teeraputon S , Santanirand P , Wongchai T , Songjang W , Lapsomthob N , Jaikrasun D , et al. Prevalence of methicillin resistance and macrolide-lincosamide-streptogramin B resistance in Staphylococcus haemolyticus among clinical strains at a tertiary-care hospital in Thailand. New Microbes New Infect 2017;19:2833. https://doi.org/10.1016/j.nmni.2017.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Becker K , Heilmann C , Peters G . Coagulase-negative staphylococci. Clin Microbiol Rev 2014;27:870926. https://doi.org/10.1128/CMR.00109-13.

  • 24.

    Shrestha LB , Bhattarai NR , Khanal B . Antibiotic resistance and biofilm formation among coagulase-negative staphylococci isolated from clinical samples at a tertiary care hospital of Eastern Nepal. Antimicrob Resist Infect Control 2017;6:89. https://doi.org/10.1186/s13756-017-0251-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Oliveira A , Cunha Mde L . Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. BMC Res Notes 2010;3:260. https://doi.org/10.1186/1756-0500-3-260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Thilakavathy P , Priyan RM , Jagatheeswari PA , Charles J , Dhanalakshmi V , Lallitha S , et al. Evaluation of ica gene in comparison with phenotypic methods for detection of biofilm production by coagulase negative staphylococci in a tertiary care hospital. J Clin Diagn Res 2015;9:DC16DC19. https://doi.org/10.7860/JCDR/2015/11725.6371.

    • Search Google Scholar
    • Export Citation
  • 27.

    Fey PD , Olson ME . Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 2010;5(6):917933. https://doi.org/10.2217/fmb.10.56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Qin Z , Yang X , Yang L , Jiang J , Ou Y , Molin S , et al. Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol 2007;56:8393. https://doi.org/10.1007/978-3-540-75418-3_10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
  • Top

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2022 67 1 1
May 2022 75 2 1
Jun 2022 62 5 6
Jul 2022 90 0 0
Aug 2022 65 2 1
Sep 2022 64 1 1
Oct 2022 1 0 0