For many years, coagulase-negative staphylococci (CoNS) have been considered non-pathogenic bacteria. However, recently, CoNS are becoming more common bacteriological factors isolated from cases of chronic rhinosinusitis in humans. Moreover, most of them represent the multidrug-resistant or/and methicillin-resistant profile, which significantly increases the therapeutic difficulties. The aim of the study was to characterize profile of resistant coagulase-negative staphylococci isolated from cases of chronic rhinosinusitis in patients treated in a Medical Center in Warsaw in 2015–2016.
The study material was derived from patients with diagnosed chronic rhinosinusitis treated at the MML Medical Center in Warsaw. The material was obtained intraoperatively from maxillary, frontal, and ethmoid sinuses.
In total, 1,044 strains were isolated from the studied material. Coagulase-negative staphylococci were predominant, with the largest share of Staphylococcus epidermidis. Isolated CoNS were mainly resistant to macrolide, lincosamide, and tetracycline. Among the S. epidermidis strains, we also showed 35.6% of MDR and 34.7% of methicillin-resistant strains.
The same values for other non-epidermidis species were 31.5% and 18.5%, respectively and the percentage of strains with MAR >0.2 was greater in S. epidermidis (32.6%) than S. non-epidermidis (23.9%). Although the percentage of strains resistant to tigecycline, glycopeptides, rifampicin and oxazolidinones was very small (2.3%, 1.9%, 1.4% and 0.7% respectively), single strains were reported in both groups.
The study has shown a high proportion of MDR and methicillin-resistant CoNS strains, which indicates a large share of drug-resistant microorganisms in the process of persistence of chronic rhinosinusitis; therefore, isolation of this group of microorganisms from clinical cases using aseptic techniques should not be neglected.
Dietz de Loos D , Lourijsen ES , Wildeman MAM , Freling MD , Wolvers NJM , Reitsma S , et al. Prevalence of chronic rhinosinusitis in the general population based on sinus radiology and symptomatology. J Allergy Clin Immunol 2019; 143: 1207–1214.
Lam K , Schleimer R , Kern RC . The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses. Curr Allergy Asthma Rep 2015; 15: 41. https://doi.org/10.1007/s11882-015-0540-2.
Halawi AM , Smith SS , Chandra RK . Chronic rhinosinusitis: epidemiology and cost. Allergy Asthma Proc 2013; 34 :328–334. https://doi.org/10.2500/aap.2013.34.3675.
Leszczyńska J , Stryjewska-Makuch G , Lisowska G , Kolebacz B , Michalak-Kolarz M . Fungal sinusitis among patients with chronic rhinosinusitis who underwent endoscopic sinus surgery. Otolaryngol Pol 2018; 72: 35–41. https://doi.org/10.5604/01.3001.0012.1263.
Rowan MD , Lee S , Sahu N , Kanaan A , Cox S , Phillips CD , et al. The role of viruses in the clinical presentation of chronic rhinosinusitis. Am J Rhinol Allergy 2015; 29: e197–e200. https://doi.org/10.2500/ajra.2015.29.4242.
Becker K , Heilmann C , Peters G . Coagulase-negative Staphylococci. Clin Microbiol Rev 2014; 27: 870–926. https://doi.org/10.1128/CMR.00109-13.
Gandolfi-Decristophoris P , Regula G , Petrini O , Zinsstag J , Schelling E . Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs. J Vet Sci 2013; 14: 449–456. https://doi.org/10.4142/jvs.2013.14.4.449.
Li J , Wu Y , Li X , Di B , Wang L . Distribution and drug sensitivity test of bacteria of patients on chronic rhinosinusitis with or without nasal polyps. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2016; 30: 115–118.
Lee JYH , Monk IR , Gonçalves da Silva A , Seemann T , Chua KYL , Kearns A , et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis .Nat Microbiol 2018; 3: 1175–1185. https://doi.org/10.1038/s41564-018-0230-7.
Grice EA , Segre JA . The skin microbiome. Nat Rev Microbiol 2011; 9: 244–253. https://doi.org/10.1038/nrmicro2537.
Gundtoft PH , Pedersen AB , Schønheyder HC , Møller JK , Overgaard S . One-year incidence of prosthetic joint infection in total hip arthroplasty: a cohort study with linkage of the Danish Hip Arthroplasty Register and Danish Microbiology Databases. Osteoarthritis Cartilage 2016; 25: 685–693. https://doi.org/10.1016/j.joca.2016.12.010.
Ravi S , Zhu M , Luey C , Young SW . Antibiotic resistance in early periprosthetic joint infection. ANZ J Surg 2016; 86: 1014–1018. https://doi.org/10.1111/ans.13720.
Guilbert J , Meau-Petit V , de Labriolle-Vaylet C , Vu-Thien H , Renolleau S . Coagulase-negative staphylococcal osteomyelitis in preterm infants: a proposal for a diagnostic procedure. Arch Pediatr 2010; 17: 1473–1476. https://doi.org/10.1016/j.arcped.2010.04.024.
Widerström M . Significance of Staphylococcus epidermidis in health care-associated infections, from contaminant to clinically relevant pathogen: this is a wake-up call! J Clin Microbiol 2016; 54: 1679–1681. https://doi.org/10.1128/JCM.00743-16.
Namysłowski W , Namysłowski G , Buszman E , Misiołek M . Microbiology of acute exacerbation chronic sinusitis in adults. Otolaryngol Pol 2004; 58: 331–337.
Matas A , Veiga A , Gabriel JP . Brain abscess due to Staphylococcus lugdunensis in the absence of endocarditis or bacteremia. Case Rep Neurol 2015; 14: 1–5. https://doi.org/10.1159/000371441.
Campoccia D , Montanaro L , Visai L , Corazzari T , Poggio C , Pegreffi F , et al. Characterization of 26 Staphylococcus warneri isolates from orthopedic infections. Int J Artif Organs 2010; 33: 575–581. https://doi.org/10.1177/039139881003300903.
Czekaj T , Ciszewski M , Szewczyk EM . Staphylococcus haemolyticus– an emerging threat in the twilight of the antibiotics age. Microbiology 2015; 161: 2061–2068. https://doi.org/10.1099/mic.0.000178.
Szczuka E , Telega K , Kaznowski A . Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens. Folia Microbiol (Praha) 2015; 60: 1–5. https://doi.org/10.1007/s12223-014-0332-4.
Rosenfeld RM , Piccirillo JF , Chandrasekhar SS , Brook I , Kumar KA , Kramper M , et al. Clinical practice guideline (update): adult sinusitis. Otolaryngol Head Neck Surg 2015; 152: S1–S39. https://doi.org/10.1177/0194599815572097.
Zhang Z , Nithin D , Adappa ND , Lautenbach E , Chiu AG , Doghramji LJ , et al. Coagulase-negative staphylococcus culture in chronic rhinosinusitis. Int Forum Allergy Rhinol 2015; 5: 204–213. https://doi.org/10.1002/alr.21439.
Nowakiewicz A , Ziółkowska G , Zięba P , Gnat S , Wojtanowicz-Markiewicz K , Trościańczyk A . Coagulase- positive Staphylococcus isolated from wildlife: identification, molecular characterization and evaluation of resistance profiles with focus on a methicillin-resistant strain. Comp Immunol Microb 2016; 44: 21–28 https://doi.org/10.1016/j.cimid.2015.11.003.
Clinical and Laboratory Standard Institute (CLSI) . Performance standards for antimicrobial susceptibility testing. 30th ed. Wayne, Pennsylvania, USA: CLSI supplement M100-S30, 2020.
Żabicka D , Hryniewicz W . Rekomendacje doboru testów do oznaczania wrażliwości bakterii na antybiotyki i chemioterapeutyki 2009. Oznaczanie wrażliwości ziarniaków Gram-dodatnich z rodzaju Staphylococcus spp. Krajowy Ośrodek Referencyjny ds. Lekowrażliwości Drobnoustrojów. Available from: https://www.korld.edu.pl [Accessed 14 May 2021].
Woś J , Remjasz A . Inflammation of the nasal mucosa and paranasal sinuses. Pol Otorhino Rev 2019; 8: 16–26. https://doi.org/10.5604/01.3001.0013.1412.
Koksal F , Yasar H , Samasti M . Antibiotic resistance patterns of coagulase negative Staphylococcus strains isolated from blood cultures of septicemic patients in Turkey. Microbiol Res 2009; 164: 404–410. https://doi.org/10.1016/j.micres.2007.03.004.
Al-Haqan A , Boswihi SS , Pathan S , Udo EE . Antimicrobial resistance and virulence determinants in coagulase-negative staphylococci isolated mainly from preterm neonates. PLoS One 2020; 15: e0236713. https://doi.org/10.1371/journal.pone.0236713.
Singh S , Dhawan B , Kapil A , Kabra SK , Suri A , Sreenivas V , et al. Coagulase-negative staphylococci causing blood stream infection at an Indian tertiary care hospital: prevalence, antimicrobial resistance and molecular characterisation. Indian J Med Microbiol 2016; 34: 500–505. https://doi.org/10.4103/0255-0857.195374.
Szczuka E , Krzymińska S , Bogucka N , Kaznowski A . Multifactorial mechanisms of the pathogenesis of methicillin-resistant Staphylococcus hominis isolated from bloodstream infections. Antonie van Leeuwenhoek 2018; 111: 1259–1265. https://doi.org/10.1007/s10482-017-1007-3.
Magiorakos A-P , Srinivasan A , Carey RB , Carmeli Y , Falagas ME , Giske CG , et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Asante J , Hetsa BA , Amoako DG , Abia ALK , Bester LA , Essack SY . Multidrug-resistant coagulase-negative staphylococci isolated from bloodstream in the uMgungundlovu district of KwaZulu-Natal Province in South Africa: emerging pathogens. Antibiotics 2021; 10: 198. https://doi.org/10.3390/antibiotics10020198.
Rezai MS , Pourmousa R , Dadashzadeh R , Ahangarkani F . Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis. Caspian J Intern Med 2016; 7: 114–119.
Leclercq R . Epidemiological and resistance issues in multidrug-resistant staphylococci and enterococci. Clin Microbiol Infect 2009; 15: 224–231. https://doi.org/10.1111/j.1469-0691.2009.02739.x.
Alharbi NS . Screening of antibiotic-resistant staphylococci in the nasal cavity of patients and healthy individuals. Saudi J Biol Sci 2020; 27: 100–105. https://doi.org/10.1016/j.sjbs.2019.05.008.
Barros EM , Ceotto H , Bastos MCF , dos Santos KRN , Giambiagi-deMarval M . Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol 2012; 50: 166–168. https://doi.org/10.1128/JCM.05563-11.
Stefani S , Varaldo PE . Epidemiology of methicillin-resistant staphylococci in Europe. Clin Microbiol Infect 2003; 9: 1179–1186. https://doi.org/10.1111/j.1469-0691.2003.00698.x.
Chabi R , Momtaz H . Virulence factors and antibiotic resistance properties of the Staphylococcus epidermidis strains isolated from hospital infections in Ahvaz, Iran. Trop Med Health 2019; 47: 56. https://doi.org/10.1186/s41182-019-0180-7.
Kang EY-C , Hou C-H , Huang Y-C , Hsiao C-H . Conjunctival colonisation and antibiotic resistance of coagulase negative Staphylococcus after cataract surgery: a 6-month longitudinal study at a medical centre in Taiwan. BMJ Open 2019; 9: e027036. https://doi.org/10.1136/bmjopen-2018-027036.
Krzymińska S , Szczuka E , Dudzińska K , Kaznowski A . Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens. Antonie Van Leeuwenhoek 2015; 107: 857–868. https://doi.org/10.1007/s10482-015-0378-6.
Hooper DC . Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001; 7: 337–341. https://doi.org/10.3201/eid0702.010239.
Shariati A , Dadashi M , Chegini Z , van Belkum A , Mirzaii M , Khoramrooz SS , et al. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9: 56. https://doi.org/10.1186/s13756-020-00714-9.
Szczuka E , Grabska K , Kaznowski A . In vitro activity of rifampicin combined with daptomycin or tigecycline on Staphylococcus haemolyticus biofilms. Curr Microbiol 2015; 71: 184–189. https://doi.org/10.1007/s00284-015-0821-y.
World health organization website. Available online: https://aware.essentialmeds.org/groups [Accessed 17 May 2021].
Nowakiewicz A , Zięba P , Gnat S , Matuszewski Ł . Last call for replacement of antimicrobials in animal production: modern challenges, opportunities, and potential solutions. Antibiotics 2020; 9: 883. https://doi.org/10.3390/antibiotics9120883.