Authors:
Michał Michalik MML Medical Center, Bagno 2, 00-112, Warsaw, Poland

Search for other papers by Michał Michalik in
Current site
Google Scholar
PubMed
Close
,
Aneta Nowakiewicz University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland

Search for other papers by Aneta Nowakiewicz in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3961-5291
,
Aleksandra Trościańczyk University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland

Search for other papers by Aleksandra Trościańczyk in
Current site
Google Scholar
PubMed
Close
,
Cezary Kowalski University of Life Sciences, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Environmental Protection, Akademicka 12, 20-033, Lublin, Poland

Search for other papers by Cezary Kowalski in
Current site
Google Scholar
PubMed
Close
, and
Adrianna Podbielska-Kubera MML Medical Center, Bagno 2, 00-112, Warsaw, Poland

Search for other papers by Adrianna Podbielska-Kubera in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For many years, coagulase-negative staphylococci (CoNS) have been considered non-pathogenic bacteria. However, recently, CoNS are becoming more common bacteriological factors isolated from cases of chronic rhinosinusitis in humans. Moreover, most of them represent the multidrug-resistant or/and methicillin-resistant profile, which significantly increases the therapeutic difficulties. The aim of the study was to characterize profile of resistant coagulase-negative staphylococci isolated from cases of chronic rhinosinusitis in patients treated in a Medical Center in Warsaw in 2015–2016.

The study material was derived from patients with diagnosed chronic rhinosinusitis treated at the MML Medical Center in Warsaw. The material was obtained intraoperatively from maxillary, frontal, and ethmoid sinuses.

In total, 1,044 strains were isolated from the studied material. Coagulase-negative staphylococci were predominant, with the largest share of Staphylococcus epidermidis. Isolated CoNS were mainly resistant to macrolide, lincosamide, and tetracycline. Among the S. epidermidis strains, we also showed 35.6% of MDR and 34.7% of methicillin-resistant strains.

The same values for other non-epidermidis species were 31.5% and 18.5%, respectively and the percentage of strains with MAR >0.2 was greater in S. epidermidis (32.6%) than S. non-epidermidis (23.9%). Although the percentage of strains resistant to tigecycline, glycopeptides, rifampicin and oxazolidinones was very small (2.3%, 1.9%, 1.4% and 0.7% respectively), single strains were reported in both groups.

The study has shown a high proportion of MDR and methicillin-resistant CoNS strains, which indicates a large share of drug-resistant microorganisms in the process of persistence of chronic rhinosinusitis; therefore, isolation of this group of microorganisms from clinical cases using aseptic techniques should not be neglected.

  • 1.

    Dietz de Loos D , Lourijsen ES , Wildeman MAM , Freling MD , Wolvers NJM , Reitsma S , et al. Prevalence of chronic rhinosinusitis in the general population based on sinus radiology and symptomatology. J Allergy Clin Immunol 2019; 143: 12071214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lam K , Schleimer R , Kern RC . The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses. Curr Allergy Asthma Rep 2015; 15: 41. https://doi.org/10.1007/s11882-015-0540-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Halawi AM , Smith SS , Chandra RK . Chronic rhinosinusitis: epidemiology and cost. Allergy Asthma Proc 2013; 34 :328334. https://doi.org/10.2500/aap.2013.34.3675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Leszczyńska J , Stryjewska-Makuch G , Lisowska G , Kolebacz B , Michalak-Kolarz M . Fungal sinusitis among patients with chronic rhinosinusitis who underwent endoscopic sinus surgery. Otolaryngol Pol 2018; 72: 3541. https://doi.org/10.5604/01.3001.0012.1263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Rowan MD , Lee S , Sahu N , Kanaan A , Cox S , Phillips CD , et al. The role of viruses in the clinical presentation of chronic rhinosinusitis. Am J Rhinol Allergy 2015; 29: e197e200. https://doi.org/10.2500/ajra.2015.29.4242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Becker K , Heilmann C , Peters G . Coagulase-negative Staphylococci. Clin Microbiol Rev 2014; 27: 870926. https://doi.org/10.1128/CMR.00109-13.

  • 7.

    Gandolfi-Decristophoris P , Regula G , Petrini O , Zinsstag J , Schelling E . Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs. J Vet Sci 2013; 14: 449456. https://doi.org/10.4142/jvs.2013.14.4.449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Li J , Wu Y , Li X , Di B , Wang L . Distribution and drug sensitivity test of bacteria of patients on chronic rhinosinusitis with or without nasal polyps. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2016; 30: 115118.

    • Search Google Scholar
    • Export Citation
  • 9.

    Lee JYH , Monk IR , Gonçalves da Silva A , Seemann T , Chua KYL , Kearns A , et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis .Nat Microbiol 2018; 3: 11751185. https://doi.org/10.1038/s41564-018-0230-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Grice EA , Segre JA . The skin microbiome. Nat Rev Microbiol 2011; 9: 244253. https://doi.org/10.1038/nrmicro2537.

  • 11.

    Gundtoft PH , Pedersen AB , Schønheyder HC , Møller JK , Overgaard S . One-year incidence of prosthetic joint infection in total hip arthroplasty: a cohort study with linkage of the Danish Hip Arthroplasty Register and Danish Microbiology Databases. Osteoarthritis Cartilage 2016; 25: 685693. https://doi.org/10.1016/j.joca.2016.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ravi S , Zhu M , Luey C , Young SW . Antibiotic resistance in early periprosthetic joint infection. ANZ J Surg 2016; 86: 10141018. https://doi.org/10.1111/ans.13720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Guilbert J , Meau-Petit V , de Labriolle-Vaylet C , Vu-Thien H , Renolleau S . Coagulase-negative staphylococcal osteomyelitis in preterm infants: a proposal for a diagnostic procedure. Arch Pediatr 2010; 17: 14731476. https://doi.org/10.1016/j.arcped.2010.04.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Widerström M . Significance of Staphylococcus epidermidis in health care-associated infections, from contaminant to clinically relevant pathogen: this is a wake-up call! J Clin Microbiol 2016; 54: 16791681. https://doi.org/10.1128/JCM.00743-16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Namysłowski W , Namysłowski G , Buszman E , Misiołek M . Microbiology of acute exacerbation chronic sinusitis in adults. Otolaryngol Pol 2004; 58: 331337.

    • Search Google Scholar
    • Export Citation
  • 16.

    Matas A , Veiga A , Gabriel JP . Brain abscess due to Staphylococcus lugdunensis in the absence of endocarditis or bacteremia. Case Rep Neurol 2015; 14: 15. https://doi.org/10.1159/000371441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Campoccia D , Montanaro L , Visai L , Corazzari T , Poggio C , Pegreffi F , et al. Characterization of 26 Staphylococcus warneri isolates from orthopedic infections. Int J Artif Organs 2010; 33: 575581. https://doi.org/10.1177/039139881003300903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Czekaj T , Ciszewski M , Szewczyk EM . Staphylococcus haemolyticus– an emerging threat in the twilight of the antibiotics age. Microbiology 2015; 161: 20612068. https://doi.org/10.1099/mic.0.000178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Szczuka E , Telega K , Kaznowski A . Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens. Folia Microbiol (Praha) 2015; 60: 15. https://doi.org/10.1007/s12223-014-0332-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Rosenfeld RM , Piccirillo JF , Chandrasekhar SS , Brook I , Kumar KA , Kramper M , et al. Clinical practice guideline (update): adult sinusitis. Otolaryngol Head Neck Surg 2015; 152: S1S39. https://doi.org/10.1177/0194599815572097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Zhang Z , Nithin D , Adappa ND , Lautenbach E , Chiu AG , Doghramji LJ , et al. Coagulase-negative staphylococcus culture in chronic rhinosinusitis. Int Forum Allergy Rhinol 2015; 5: 204213. https://doi.org/10.1002/alr.21439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Nowakiewicz A , Ziółkowska G , Zięba P , Gnat S , Wojtanowicz-Markiewicz K , Trościańczyk A . Coagulase- positive Staphylococcus isolated from wildlife: identification, molecular characterization and evaluation of resistance profiles with focus on a methicillin-resistant strain. Comp Immunol Microb 2016; 44: 2128 https://doi.org/10.1016/j.cimid.2015.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Clinical and Laboratory Standard Institute (CLSI) . Performance standards for antimicrobial susceptibility testing. 30th ed. Wayne, Pennsylvania, USA: CLSI supplement M100-S30, 2020.

    • Search Google Scholar
    • Export Citation
  • 24.

    Żabicka D , Hryniewicz W . Rekomendacje doboru testów do oznaczania wrażliwości bakterii na antybiotyki i chemioterapeutyki 2009. Oznaczanie wrażliwości ziarniaków Gram-dodatnich z rodzaju Staphylococcus spp. Krajowy Ośrodek Referencyjny ds. Lekowrażliwości Drobnoustrojów. Available from: https://www.korld.edu.pl [Accessed 14 May 2021].

    • Search Google Scholar
    • Export Citation
  • 25.

    Woś J , Remjasz A . Inflammation of the nasal mucosa and paranasal sinuses. Pol Otorhino Rev 2019; 8: 1626. https://doi.org/10.5604/01.3001.0013.1412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Koksal F , Yasar H , Samasti M . Antibiotic resistance patterns of coagulase negative Staphylococcus strains isolated from blood cultures of septicemic patients in Turkey. Microbiol Res 2009; 164: 404410. https://doi.org/10.1016/j.micres.2007.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Al-Haqan A , Boswihi SS , Pathan S , Udo EE . Antimicrobial resistance and virulence determinants in coagulase-negative staphylococci isolated mainly from preterm neonates. PLoS One 2020; 15: e0236713. https://doi.org/10.1371/journal.pone.0236713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Singh S , Dhawan B , Kapil A , Kabra SK , Suri A , Sreenivas V , et al. Coagulase-negative staphylococci causing blood stream infection at an Indian tertiary care hospital: prevalence, antimicrobial resistance and molecular characterisation. Indian J Med Microbiol 2016; 34: 500505. https://doi.org/10.4103/0255-0857.195374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Szczuka E , Krzymińska S , Bogucka N , Kaznowski A . Multifactorial mechanisms of the pathogenesis of methicillin-resistant Staphylococcus hominis isolated from bloodstream infections. Antonie van Leeuwenhoek 2018; 111: 12591265. https://doi.org/10.1007/s10482-017-1007-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Magiorakos A-P , Srinivasan A , Carey RB , Carmeli Y , Falagas ME , Giske CG , et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Asante J , Hetsa BA , Amoako DG , Abia ALK , Bester LA , Essack SY . Multidrug-resistant coagulase-negative staphylococci isolated from bloodstream in the uMgungundlovu district of KwaZulu-Natal Province in South Africa: emerging pathogens. Antibiotics 2021; 10: 198. https://doi.org/10.3390/antibiotics10020198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Rezai MS , Pourmousa R , Dadashzadeh R , Ahangarkani F . Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis. Caspian J Intern Med 2016; 7: 114119.

    • Search Google Scholar
    • Export Citation
  • 33.

    Leclercq R . Epidemiological and resistance issues in multidrug-resistant staphylococci and enterococci. Clin Microbiol Infect 2009; 15: 224231. https://doi.org/10.1111/j.1469-0691.2009.02739.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Alharbi NS . Screening of antibiotic-resistant staphylococci in the nasal cavity of patients and healthy individuals. Saudi J Biol Sci 2020; 27: 100105. https://doi.org/10.1016/j.sjbs.2019.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Barros EM , Ceotto H , Bastos MCF , dos Santos KRN , Giambiagi-deMarval M . Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol 2012; 50: 166168. https://doi.org/10.1128/JCM.05563-11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Stefani S , Varaldo PE . Epidemiology of methicillin-resistant staphylococci in Europe. Clin Microbiol Infect 2003; 9: 11791186. https://doi.org/10.1111/j.1469-0691.2003.00698.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Chabi R , Momtaz H . Virulence factors and antibiotic resistance properties of the Staphylococcus epidermidis strains isolated from hospital infections in Ahvaz, Iran. Trop Med Health 2019; 47: 56. https://doi.org/10.1186/s41182-019-0180-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Kang EY-C , Hou C-H , Huang Y-C , Hsiao C-H . Conjunctival colonisation and antibiotic resistance of coagulase negative Staphylococcus after cataract surgery: a 6-month longitudinal study at a medical centre in Taiwan. BMJ Open 2019; 9: e027036. https://doi.org/10.1136/bmjopen-2018-027036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Krzymińska S , Szczuka E , Dudzińska K , Kaznowski A . Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens. Antonie Van Leeuwenhoek 2015; 107: 857868. https://doi.org/10.1007/s10482-015-0378-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Hooper DC . Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001; 7: 337341. https://doi.org/10.3201/eid0702.010239.

  • 41.

    Shariati A , Dadashi M , Chegini Z , van Belkum A , Mirzaii M , Khoramrooz SS , et al. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9: 56. https://doi.org/10.1186/s13756-020-00714-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Szczuka E , Grabska K , Kaznowski A . In vitro activity of rifampicin combined with daptomycin or tigecycline on Staphylococcus haemolyticus biofilms. Curr Microbiol 2015; 71: 184189. https://doi.org/10.1007/s00284-015-0821-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    World health organization website. Available online: https://aware.essentialmeds.org/groups [Accessed 17 May 2021].

  • 44.

    Nowakiewicz A , Zięba P , Gnat S , Matuszewski Ł . Last call for replacement of antimicrobials in animal production: modern challenges, opportunities, and potential solutions. Antibiotics 2020; 9: 883. https://doi.org/10.3390/antibiotics9120883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 52 0 0
Sep 2024 116 0 0
Oct 2024 193 0 0
Nov 2024 55 0 0
Dec 2024 68 0 0
Jan 2025 89 0 0
Feb 2025 21 0 0