Authors:
Alexandra Sashova Alexandrova Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1, G.Sofiiski Boul., 1431-Sofia, Bulgaria

Search for other papers by Alexandra Sashova Alexandrova in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5944-961X
,
Daniela Rosenova Pencheva Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical Faculty, Medical University of Sofia, 2, Zdrave str., 1431-Sofia, Bulgaria

Search for other papers by Daniela Rosenova Pencheva in
Current site
Google Scholar
PubMed
Close
,
Lena Petrova Setchanova Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1, G.Sofiiski Boul., 1431-Sofia, Bulgaria

Search for other papers by Lena Petrova Setchanova in
Current site
Google Scholar
PubMed
Close
, and
Raina Tsvetanova Gergova Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1, G.Sofiiski Boul., 1431-Sofia, Bulgaria

Search for other papers by Raina Tsvetanova Gergova in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The study aimed to evaluate the presence of pili in non-invasive pediatric pneumococcal isolates and to elucidate possible links with genetic lineages, serotypes, and antimicrobial resistance. We examined 147 Streptococcus pneumoniae isolates from children with respiratory tract infections and acute otitis media. Serotyping was performed by latex agglutination and capsule swelling reaction. Serogroup 6 was subjected to PCR-serotyping. Minimum inhibitory concentrations were determined according to EUCAST breakpoints. PCRs for rlrA and pitB genes were performed to detect a presence of type 1 and type 2 pili. MLST was conducted to define the clonal structure of the piliated strains. Almost all children (96.5%) were vaccinated with the pneumococcal conjugate vaccine PCV10. We detected 76.8% non-PCV10 – serotypes (NVTs) and 14.3% PCV10 serotypes. The predominant serotypes were NVTs: 19A (14.3%), 6C (12.2%), 3 (9.5%), 15A (7.5%) and 6A (6.8%). PI-1 was detected among 10.9% non-PCV10 serotypes 6A, 6C, and 19A and 6.1% PCV10 serotypes 19F and 23F. Type 2 pili were not found in the studied population. High levels of antimicrobial nonsusceptibility to erythromycin (58.5%), oral penicillin (55.8%), clindamycin (46.9%), trimethoprim-sulfamethoxazole (45.6%), tetracycline (39.5%) and ceftriaxone (16.3%) were revealed. The multidrug-resistant strains (MDR) were 55.1%. MLST represented 18 STs and three CCs among the piliated pneumococci: CC386, CC320, and CC81. More than half of the piliated strains (56.0%) belonged to successfully circulating international clones. PI-1 was associated mainly with MDR 6A, 6C, 19A, 19F, and 23F isolates from the widespread CC386, CC320, and CC81.

  • 1.

    Maraqa FN. Pneumococcal infections. Pediatr Rev 2014; 35(7): 299310.

  • 2.

    Brooks LRK, Mias GI. Streptococcus pneumoniae's virulence and host immunity: aging, diagnostics, and prevention. Front Immunol 2018; 22(9): 1366.

    • Search Google Scholar
    • Export Citation
  • 3.

    Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019; 21(11): e13077.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Danne C, Dramsi S. Pili of gram-positive bacteria: roles in host colonization. Res Microbiol 2012; 163(9–10): 64558.

  • 5.

    Henriques-Normark B, Tuomanen E. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med 2013 PMID: 23818515.

  • 6.

    Blumental S, Granger-Farbos A, Moïsi J, Soullie B, Leroy P, Njanpop-Lafourcade B, et al.. Virulence factors of Streptococcus pneumoniae. Comparison between African and French invasive isolates and implication for future vaccines. PLoS One 2015; 27; 10(7): e0133885. Available from: https://doi.org/10.1371/journal.pone.0133885.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, et al.. A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA 2006; 103: 285762.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bagnoli F, Moschioni M, Donati C, Dimitrovska V, Ferlenghi I, Facciotti C, et al.. A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol 2008; 190: 548092.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Aguiar S, Serrano I, Pinto F, Melo-Christino J, Ramirez M. The presence of the pilus locus is a clonal property among pneumococcal invasive isolates. BMC Microbiol 2008; 28(8): 41.

    • Search Google Scholar
    • Export Citation
  • 10.

    Nelson AL, Dahlberg S, Falker S, Rounioja S, et al.. RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol Microbiol 2007; 66(2): 329340.

  • 11.

    Figueira M, Moschioni M, De Angelis G, Barocchi M, Sabharwal V, Masignani V, et al.. Variation of pneumococcal Pilus-1 expression results in vaccine escape during Experimental Otitis Media [EOM]. PLoS One 2014; 9(1): e83798. Available from: https://doi.org/10.1371/journal.pone.0083798.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Turner P, Melchiorre S, Moschioni M, Barocchi M, Turner C, Watthanaworawit W, et al.. Assessment of Streptococcus pneumoniae pilus islet-1 prevalence in carried and transmitted isolates from mother-infant pairs on the Thailand Burma border. Clin Microbiol Infect 2012; 18(10): 9705.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kulohoma BW, Gray K, Kamng’ona A, Cornick J, Bentley S, Heyderman R, et al.. Piliation of invasive Streptococcus pneumoniae isolates in the era before pneumococcal conjugate vaccine introduction in Malawi. Clin Vaccin Immunol 2013; 20: 172935.

    • Search Google Scholar
    • Export Citation
  • 14.

    Ganaie F, Maruhn K, Li C, Porambo R, Elverdal P, Abeygunwardana C, et al.. Structural, genetic, and serological elucidation of Streptococcus pneumoniae serogroup 24 serotypes: discovery of a new serotype, 24C, with a variable capsule structure. J Clin Microbiol 2021; 59(7): e0054021. Available from: https://doi.org/10.1128/JCM.00540-21.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Moschioni M, De Angelis G, Melchiorre S, Masignoni V, Leibovitz E, Barocchi M, et al.. Prevalence of pilus-encoding islets among acute otitis media Streptococcus pneumoniae isolates from Israel. Clin Microbiol Infect 2010; 16: 15014.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Regev-Yochay G, Hanage WP, Trzcinski K, Rifas-Shiman S, Lee G, Bessolo A, et al.. Re-emergence of the type 1 pilus among Streptococcus pneumoniae isolates in Massachusetts, USA. Vaccine 2010; 28(30): 48424846.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hjalmarsdottir MA, Petursdottir B, Erlendsdottir H, Haraldsson G, Kristinsson K. Prevalence of pilus genes in pneumococci isolated from healthy preschool children in Iceland: association with vaccine serotypes and antibiotic resistance. J Antimicrob Chemother 2015; 70(8): 22038.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Greve T, Møller JK. Accuracy of using the lytA gene to distinguish Streptococcus pneumoniae from related species. J Med Microbiol 2012; 61: 478482.

  • 19.

    Jin P, Xiao M, Kong F, Oftadeh S, Zhou F, Liu C, et al.. Simple, accurate, serotype-specific PCR assay to differentiate Streptococcus pneumoniae serotypes 6A, 6B, and 6C. J Clin Microbiol 2009; 47(8): 24704. Available from: https://doi.org/10.1128/JCM.00484-09.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    European committee on antimicrobial susceptibility testing breakpoint tables for interpretation of MICs and zone diameters version 10.0, valid from 2021-01-01.

    • Search Google Scholar
    • Export Citation
  • 21.

    Gladstone R, Lo S, Lees J, Croucher N, van Tonder A, Corander J, et al.. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine 2019; 43: 33846. Available from: https://doi.org/10.1016/j.ebiom.2019.04.021.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kriger O, Yochay G. The effect of pneumococcal conjugate vaccine on pneumococcal carriage and invasive disease. Harefuah 2019; 158(5): 31620.

  • 23.

    McElligott M, Vickers I, Cafferkey M, Cunney R, Humphreys H. Non-invasive pneumococcal serotypes and antimicrobial susceptibilities in a paediatric hospital in the era of conjugate vaccines. Vaccine 2014; 32(28): 3495500.

    • Search Google Scholar
    • Export Citation
  • 24.

    Setchanova L, Kostyanev T, Alexandrova A, Mitov I, Nashev D, Kantardjiev T. Microbiological characterization of Streptococcus pneumoniae and non-typeable Haemophilus influenzae isolates as primary causes of acute otitis media in Bulgarian children before the introduction of conjugate vaccines. Ann Clin Microbiol Antimicrobials 2013; 12: 6. Available from: https://doi.org/10.1186/1476-0711-12-6.

    • Search Google Scholar
    • Export Citation
  • 25.

    Alexandrova A, Setchanova L, Pencheva D, Mitov I. Phenotypic and genotypic characterization of serogroup 6 Streptococcus pneumoniae isolates collected during 10-valent pneumococcal conjugate vaccine era in Bulgaria. Acta Microbiol Immunol Hung 2020; 67(2): 919.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kovács E, Sahin-Tóth J, Tóthpál A, Kristóf K, van der Linden M, Tirczka T, et al.. Vaccine-driven serotype-rearrangement is seen with latency in clinical isolates: comparison of carried and clinical pneumococcal isolates from the same time period in Hungary. Vaccine 2019 Jan 3; 37(1): 99108. Available from: https://doi.org/10.1016/j.vaccine.2018.11.026.

    • Search Google Scholar
    • Export Citation
  • 27.

    Yamba Yamba L, Uddén F, Fuursted K, Ahl J, Slotved HC, Riesbeck K. Extensive/multidrug resistant pneumococci detected in clinical respiratory tract samples in Southern Sweden are closely related to international multidrug-resistant lineages. Front Cell Infect Microbiol 2022 Mar 22; 12: 824449. https://doi.org/10.3389/fcimb.2022.824449.

    • Search Google Scholar
    • Export Citation
  • 28.

    Azarian T, Mitchell PK, Georgieva M, Thompson C, Ghoulia A, Pollard A, et al.. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. Plos Pathog 2018; 14:e1007438.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Song JH, Dagan R, Klugman KP, Fritzell B. The relationship between pneumococcal serotypes and antibiotic resistance. Vaccine 2012; 30(17): 272837.

  • 30.

    Kawaguchiya M, Urushibara N, Aung MS, Ito M, Takahashi A, Habadera S, et al. High prevalence of antimicrobial resistance in non-vaccine serotypes of non-invasive/colonization isolates of Streptococcus pneumoniae: a cross-sectional study eight years after the licensure of conjugate vaccine in Japan. J Infect Public Health 2020; 13(8): 1094100.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cherazard R, Epstein M, Doan TL, Salim T, Bharti S, Smith M. Antimicrobial resistant Streptococcus pneumoniae: prevalence, mechanisms, and clinical implications. Am J Ther 2017; 24(3): e361-9. Available from: https://doi.org/10.1097/MJT.0000000000000551.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Regev-Yochay G, Jaber H, Hamdan A, Daana M, Nammouz H, Thalji A, et al.. Vaccine escape of piliated Streptococcus pneumoniae strains. Vaccine 2016 May 27; 34(25): 278792.

    • Search Google Scholar
    • Export Citation
  • 33.

    Dzaraly ND, Muthanna A, Mohd Desa MN, Taib NM, Masri SN, Rahman N, et al.. Pilus islets and the clonal spread of piliated Streptococcus pneumoniae: a review. Int J Med Microbiol 2020 Oct; 310(7): 151449.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Del Grosso M, Camilli R, D’Ambrosio F, Petrucci G, Melchiorre S, Moschioni M, et al.. Increase of pneumococcal serotype 19A in Italy is due to expansion of the piliated clone ST416/CC199. J Med Microbiol 2013 Aug; 62(Pt 8): 12205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Mayanskiy N, Savinova T, Alyabieva N, Ponomarenko O, Brzhozovskaya E, Lazareva A, et al.. Antimicrobial resistance, penicillin-binding protein sequences, and pilus islet carriage in relation to clonal evolution of Streptococcus pneumoniae serotype 19A in Russia, 2002–2013. Epidemiol Infect 2017; 145: 170819. Available from: https://doi.org/10.1017/S0950268817000541.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Zemlickova H, Jakubu V, Fridrichova M, Malisova L, Musilek M, Trojanek M. The association of pili with the emergence and replacement of the major antibiotic resistant pneumococcal clones. J Microbiol Immunol Infect 2020 Oct; 53(5): 690695.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.41
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 59 0 0
Dec 2024 53 0 0
Jan 2025 58 0 0
Feb 2025 81 0 0
Mar 2025 90 0 0
Apr 2025 36 0 0
May 2025 3 0 0