This study evaluated distribution of virulence factors and antibiotic resistance in clinical isolates of Salmonella enteritidis and Salmonella typhimurium in three cities of Iran. Altogether 48 S. enteritidis and S. typhimurium isolates were collected from patients at certain Iranian hospitals between May 2018 and September 2021. Antimicrobial susceptibility testing was performed by disk diffusion and broth microdilution methods. The presence of antibiotic-resistance genes (blaTEM,blaSHV,blaCTX-M,blaNDM,strA, strB, aadA1, tetA, tetB, floR, sul1, sul2, dfrA), integrons (classe 1 and 2), and virulence-associated genes (invA, stn, sopB, spvC, rck, phoPQ) was investigated by PCR and sequencing. Antimicrobial agents like trimethoprim-sulfamethoxazole and imipenem represent highly efficient agents with 97% susceptibility. S. enteritidis and S. typhimurium exhibited high resistance to ciprofloxacin (n = 20, 71.43%) and ceftazidime (n = 9, 45%), respectively. Overall, 3 (6.25%), 13 (27.08%), and 6 (12.5%) isolates were divided into strong, moderate, and weak biofilm producers, respectively. Moreover, blaCTX-M,blaTEM, blaSHV, sul1, sul2, tetA, tetB, floR, strA, and strB resistant genes were detected in 10 (20.8%), 5 (10.4%), 1 (2.08%), 7 (14.58%), 1 (2.08%), 3 (6.25%), 2 (4.1%), 1 (2.08%), 2 (4.1%), 2 (4.1%), respectively. Furthermore, 7 (14.58%) strains had classe 1 integron. All tested S. enteritidis strains had invA and sopB, and all S. typhimurium strains had invA and phoPQ. However, spvC remained undetected in all isolates. Extensive surveillance and efficient control measures against infection help to stop the upsurge of various antibiotic-resistant isolates.
Shen H, Chen H, Ou Y, Huang T, Chen S, Zhou L, et al. Prevalence, serotypes, and antimicrobial resistance of Salmonella isolates from patients with diarrhea in Shenzhen, China. BMC Microbiol 2020; 20(1): 1–10.
Khademi F, Vaez H, Ghanbari F, Arzanlou M, Mohammadshahi J, Sahebkar A. Prevalence of fluoroquinolone-resistant Salmonella serotypes in Iran: a meta-analysis. Pathog Glob Health 2020; 114(1): 16–29.
Wang M, Qazi IH, Wang L, Zhou G, Han H. Salmonella virulence and immune escape. Microorganisms 2020; 8(3): 407.
Mahmoudi S, Pourakbari B, Moradzadeh M, Eshaghi H, Ramezani A, Ashtiani MTH, et al. Prevalence and antimicrobial susceptibility of Salmonella and Shigella spp. among children with gastroenteritis in an Iranian referral hospital. Microb pathogenesis 2017; 109: 45–48.
Fardsanei F, Dallal MMS, Salehi TZ, Douraghi M, Memariani M, Memariani H. Antimicrobial resistance patterns, virulence gene profiles, and genetic diversity of Salmonella enterica serotype Enteritidis isolated from patients with gastroenteritis in various Iranian cities. Iranian J Basic Med Sci 2021; 24(7): 914.
Sales AJ, Naebi S, Nasiri R, Bannazadeh-Baghi H. The antibiotic resistance pattern and prevalence of blaTEM, blaSHV, blaCTX-M, blaPSE-1, sipB/C, and cmlA/tetR genes in Salmonella typhimurium isolated from children with diarrhea in Tabriz, Iran. Int J Health Life Sci 2021; 7(4).
Bidhendi M. A Review of studies on isolation, diagnosis and antimicrobial resistance of Salmonella in Iran. Vet Researches Biol Prod 2015; 28(4): 21–30.
White PA, McIver CJ, Rawlinson WD. Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother 2001; 45(9): 2658–2661.
Kaushik M, Kumar S, Kapoor RK, Virdi JS, Gulati P. Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents 2018; 51(2): 167–176.
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234(9): 14689–14708.
Riahi Rad Z, Riahi Rad Z, Goudarzi H, Goudarzi M, Mahmoudi M, Yasbolaghi Sharahi J, et al. MicroRNAs in the interaction between host–bacterial pathogens: a new perspective. J Cell Physiol 2021; 236(9): 6249–6270.
Gulig PA. Virulence plasmids of Salmonella typhimurium and other salmonellae. Microb pathogenesis 1990; 8(1): 3–11.
Kim K, Palmer AD, Vanderpool CK, Slauch JM. The small RNA PinT contributes to PhoP-mediated regulation of the Salmonella pathogenicity island 1 type III secretion system in Salmonella enterica serovar Typhimurium. J Bacteriol 2019; 201(19): e00312–e00319.
Kombade S, Kaur N. Pathogenicity island in Salmonella. Salmonella spp-A global challenge: IntechOpen; 2021.
Singh Y, Saxena A, Kumar R, Kumar Saxena M. Virulence system of Salmonella with special reference to Salmonella enterica. Salmonella-A Re-emerging pathogen; 2018.
Lan TT, Gaucher M-L, Nhan NT, Letellier A, Quessy S. Distribution of virulence genes among Salmonella serotypes isolated from pigs in Southern Vietnam. J Food Prot 2018; 81(9): 1459–1466.
Lou L, Zhang P, Piao R, Wang Y. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol 2019; 9: 270.
Walpole GF, Pacheco J, Chauhan N, Clark J, Anderson KE, Abbas YM, et al. Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Nat Cell Biol 2022; 24(5): 708–722.
Koczerka M, Douarre P-E, Kempf F, Holbert S, Mistou M-Y, Grépinet O, et al. The invasin and complement-resistance protein Rck of Salmonella is more widely distributed than previously expected. Microbiol Spectr 2021; 9(2): e01457–21.
Mambu J, Barilleau E, Fragnet-Trapp L, Le Vern Y, Olivier M, Sadrin G, et al. Rck of Salmonella Typhimurium delays the host cell cycle to facilitate bacterial invasion. Front Cell Infect Microbiol 2020; 10: 586934.
Kohli N, Crisp Z, Riordan R, Li M, Alaniz RC, Jayaraman A. The microbiota metabolite indole inhibits Salmonella virulence: involvement of the PhoPQ two-component system. PLoS One 2018; 13(1): e0190613.
Dehinwal R, Cooley D, Rakov AV, Alugupalli AS, Harmon J, Cunrath O, et al. Increased production of outer membrane vesicles by Salmonella interferes with complement-mediated innate immune attack. Mbio 2021; 12(3): e00869–21.
Gopinath A, Allen TA, Bridgwater CJ, Young CM, Worley MJ. The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream. PloS one 2019; 14(12): e0226126.
Weinstein MP. Performance standards for antimicrobial susceptibility testing: Clinical and Laboratory Standards Institute; 2021.
Sharahi JY, Hashemi A, Ardebili A, Davoudabadi S. Molecular characteristics of antibiotic-resistant Escherichia coli and Klebsiella pneumoniae strains isolated from hospitalized patients in Tehran, Iran. Ann Clin Microbiol antimicrobials 2021; 20(1): 1–14.
Rad ZR, Rad ZR, Goudarzi H, Goudarzi M, Alizade H, Mazraeh FN, et al. Detection of NDM-1 producing Klebsiella pneumoniae ST15 and ST147 in Iran during 2019–2020. Acta Microbiol Immunol Hung 2021; 68(3): 177–182.
Davoudabadi S, Goudarzi H, Goudarzi M, Ardebili A, Faghihloo E, Sharahi JY, et al. Detection of extensively drug-resistant and hypervirulent Klebsiella pneumoniae ST15, ST147, ST377 and ST442 in Iran. Acta Microbiol Immunol Hung 2022; 69(1): 77–86.
Aziz SAA, Abdel-Latef GK, Shany SA, Rouby SR. Molecular detection of integron and antimicrobial resistance genes in multidrug resistant Salmonella isolated from poultry, calves and human in Beni-Suef governorate, Egypt. Beni-Suef Univ J Basic Appl Sci 2018; 7(4): 535–542.
Thung TY, Radu S, Mahyudin NA, Rukayadi Y, Zakaria Z, Mazlan N, et al. Prevalence, virulence genes and antimicrobial resistance profiles of Salmonella serovars from retail beef in Selangor, Malaysia. Front Microbiol 2018; 8: 2697.
Mąka Ł, Maćkiw E, Ścieżyńska H, Modzelewska M, Popowska M. Resistance to sulfonamides and dissemination of sul genes among Salmonella spp. isolated from food in Poland. Foodborne Pathog Dis 2015; 12(5): 383–389.
Abbasi E, Goudarzi H, Hashemi A, Chirani AS, Ardebili A, Goudarzi M, et al. Decreased carO gene expression and OXA-type carbapenemases among extensively drug-resistant Acinetobacter baumannii strains isolated from burn patients in Tehran, Iran. Acta Microbiol Immunol Hung 2021; 68(1): 48–54.
Abbasi E, Mondanizadeh M, van Belkum A, Ghaznavi-Rad E. Low frequency of adenovirus, rotavirus, and norovirus in pediatric diarrheal samples from Central Iran. Arch Pediatr Infect Dis 2021 (In Press).
Fardsanei F, Dallal MMS, Douraghi M, Memariani H, Bakhshi B, Salehi TZ, et al. Antimicrobial resistance, virulence genes and genetic relatedness of Salmonella enterica serotype Enteritidis isolates recovered from human gastroenteritis in Tehran, Iran. J Glob Antimicrob Resist 2018; 12: 220–226.
Solomon EB, Niemira BA, Sapers GM, Annous BA. Biofilm formation, cellulose production, and curli biosynthesis by Salmonella originating from produce, animal, and clinical sources. J Food Prot 2005; 68(5): 906–912.
Beshiru A, Igbinosa IH, Igbinosa EO. Biofilm formation and potential virulence factors of Salmonella strains isolated from ready-to-eat shrimps. PloS one 2018; 13(9): e0204345.
Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 2006; 34(5): S20–S28.
Jin Y, Ling J. Prevalence of integrons in antibiotic-resistant Salmonella spp. in Hong Kong. Jpn J Infect Dis 2009; 62(6): 432–439.
Antunes P, Machado J, Sousa JC, Peixe L. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob Agents Chemother 2005; 49(2): 836–839.
Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from US food animals. Front Microbiol 2013; 4: 135.
Adesiji YO, Deekshit VK, Karunasagar I. Antimicrobial‐resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci Nutr 2014; 2(4): 436–442.
Asgharpour F, Mahmoud S, Marashi A, Moulana Z. Molecular detection of class 1, 2 and 3 integrons and some antimicrobial resistance genes in Salmonella Infantis isolates. Iranian J Microbiol 2018; 10(2): 104.
Pezzella C, Ricci A, DiGiannatale E, Luzzi I, Carattoli A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob Agents Chemother 2004; 48(3): 903–908.
Long L, You L, Wang D, Wang M, Wang J, Bai G, et al. Highly prevalent MDR, frequently carrying virulence genes and antimicrobial resistance genes in Salmonella enterica serovar 4,[5], 12: i:-isolates from Guizhou Province, China. Plos one 2022; 17(5): e0266443.