Infections caused by multidrug resistant (MDR) Pseudomonas aeruginosa isolates in burn patients restrict therapeutic strategies. The current study aimed to analyze antibiotic resistance genes and multilocus sequence typing (MLST) of P. aeruginosa strains isolated from burn patients in Shahid Motahari hospital in Tehran, Iran.
Altogether 63 P. aeruginosa isolates were characterized in this study. Antibiotic susceptibility testing was performed by disc diffusion method. PCR was performed to determine the frequency of resistance genes. The expression rates of mexB, mexY genes were evaluated by Real-Time PCR. Genotyping of isolates was performed by MLST analysis. All isolates were MDR in this study. The highest resistance was detected against gentamicin, tobramycin, and cefoxitin (100%), while all isolates were susceptible to colistin. Altogether 14 resistance profiles were determined, and profile 1 included more than 50% of the isolates with the highest resistance. In this study blaampC, blaVIM-2, blaOXA-10, and aac(6′)-Ib resistance genes were detected in all isolates. The expression levels of mexB and mexY genes were upregulated in 66.6 and 88.8% of MDR isolates, respectively. Overexpression of both genes was detected in 55.5% of the isolates.
MLST analysis revealed five sequence types (STs), including ST235, ST664, ST532, ST2637, and ST230, which showed a significant relationship with antibiotic resistance profiles. The present study indicates an increase in antibiotic resistance against different antibiotic families among P. aeruginosa isolates. We describe the circulation of globally distributed STs among hospitalized patients, and we report ST235 as the most common MDR clone in our study.
Neely CJ, Kartchner LB, Mendoza AE, Linz BM, Frelinger JA, Wolfgang MC, et al. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12- neutrophil polarization. PLoS One 2014; 9(1): e85623. https://doi.org/10.1371/journal.pone.0085623.
Neely CJ, Kartchner LB, Mendoza AE, Linz BM, Frelinger JA, Wolfgang MC, et al. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12-neutrophil polarization. PLoS One 2014; 9(1): e85623.
Krishnan P, Frew Q, Green A, Martin R, Dziewulski P. Cause of death and correlation with autopsy findings in burns patients. Burns 2013; 39(4): 583–588.
Manson WL, Klasen HJ, Sauer EW, Olieman A. Selective intestinal decontamination for prevention of wound colonization in severely burned patients: a retrospective analysis. Burns 1992; 18(2): 98–102. https://doi.org/10.1016/0305-4179(92)90002-c.
Manson W, Klasen H, Sauer E, Olieman A. Selective intestinal decontamination for prevention of wound colonization in severely burned patients: a retrospective analysis. Burns 1992; 18(2): 98–102.
Biswal I, Arora BS, Kasana D, Neetushree. Incidence of multidrug resistant pseudomonas aeruginosa isolated from burn patients and environment of teaching institution. J Clin Diagn Res 2014; 8(5): Dc26–Dc29. https://doi.org/10.7860/jcdr/2014/7483.4383.
Ghanbarzadeh Corehtash Z, Khorshidi A, Firoozeh F, Akbari H, Mahmoudi Aznaveh A. Biofilm Formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur J Microbiol 2015; 8(10): e22345. https://doi.org/10.5812/jjm.22345.
Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002; 34(5): 634–640.
Meletis G, Exindari M, Vavatsi N, Sofianou D, Diza E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia 2012; 16(4): 303–307.
Shaw K, Rather P, Hare R, Miller G. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Mol Biol Rev 1993; 57(1): 138–163.
Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000; 44(9): 2242–2246.
Enright MC, Spratt BG. Multilocus sequence typing. Trends Microbiology 1999; 7(12): 482–487.
Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, El Din Ashour S. Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt. BMC Infect Dis 2015; 15(1): 122. https://doi.org/10.1186/s12879-015-0861-8.
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 2016; 6(2): 71–79.
Pitout JD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J Clin Microbiol 2005; 43(7): 3129–3135.
Rafiee R, Eftekhar F, Tabatabaei SA, Minaee Tehrani D. Prevalence of extended-spectrum and metallo beta-lactamase production in AmpC beta-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol 2014; 7(9): e16436. https://doi.org/10.5812/jjm.16436.
Alqarni B, Colley B, Klebensberger J, McDougald D, Rice SA. Expression stability of 13 housekeeping genes during carbon starvation of Pseudomonas aeruginosa. J Microbiol Methods 2016; 127: 182–187. https://doi.org/10.1016/j.mimet.2016.06.008.
Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 2013; 3(3): 71–85.
Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 2004; 42(12): 5644–5649.
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309–318. https://doi.org/10.1179/2047773215y.0000000030.
Rastegar Lari AR, Alaghehbandan R, Akhlaghi L. Burn wound infections and antimicrobial resistance in tehran, Iran: an increasing problem. Ann Burns Fire Disasters 2005; 18(2): 68–73.
Corehtash ZG, Ahmad Khorshidi FF, Akbari H, Aznaveh AM. Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur J Microbiol 2015; 8(10).
Fazeli H, Sadighian H, Esfahani BN, Pourmand MR. Genetic characterization of Pseudomonas aeruginosa-resistant isolates at the university teaching hospital in Iran. Adv Biomed Res 2015; 4.
Akhi MT, Ghotaslou R, Asgharzadeh M, Varshochi M, Pirzadeh T, Memar MY, et al. Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran. GMS Hyg Infect Control 2015; 10.
Azimi L, Rastegar-Lari A, Talebi M, Ebrahimzadeh-Namvar A, Soleymanzadeh-Moghadam S. Evaluation of phenotypic methods for detection of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in Tehran. J Med Bacteriol 2013; 2(3–4): 26–31.
Rafiee R, Eftekhar F, Tabatabaei SA, Tehrani DM. Prevalence of extended-spectrum and metallo β-lactamase production in AmpC β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol 2014; 7(9).
Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother 2011; 55(11): 5370–5373.
Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M, et al. Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and Intensive Care Unit isolates of Pseudomonas aeruginosa. J Infect Public Health 2018; 11(3): 364–372. https://doi.org/10.1016/j.jiph.2017.09.016.
Dumas JL, van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254(2): 217–225. https://doi.org/10.1111/j.1574-6968.2005.00008.x.
Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2003; 23(7): 916–924. https://doi.org/10.1592/phco.23.7.916.32722.
Arabestani MR, Rajabpour M, Yousefi Mashouf R, Alikhani MY, Mousavi SM. Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med 2015; 18(2): 102–108.
Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. Pediatrics 1999; 103(4): e39. https://doi.org/10.1542/peds.103.4.e39.
Llanes C, Köhler T, Patry I, Dehecq B, van Delden C, Plésiat P. Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother 2011; 55(12): 5676–5684. https://doi.org/10.1128/aac.00101-11.
Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35(5): 736–755. https://doi.org/10.1111/j.1574-6976.2011.00268.x%J.
Yousefi S, Nahaei MR, Farajnia S, Aghazadeh M, Iversen A, Edquist P, et al. A multiresistant clone of Pseudomonas aeruginosa sequence type 773 spreading in a burn unit in Orumieh, Iran. Apmis 2013; 121(2): 146–152. https://doi.org/10.1111/j.1600-0463.2012.02948.x.
Liu C-P, Chen T-L, Wang N-Y, Chow S-F, Lin J-C, T-RjjoM Y. Detection of Pseudomonas aeruginosa isolates carrying the blaOXA-142 extended-spectrum β-lactamase gene in Taiwan. Immunol Infect 2017; 50(1): 68–74.
Giske CG, Libisch B, Colinon C, Scoulica E, Pagani L, Fuüzi M, et al. Establishing clonal relationships between VIM-1-like metallo-β-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing 2006; 44(12): 4309–4315.
Giani T, Arena F, Pollini S, Di Pilato V, D’Andrea M, De Angelis LH, et al. (2018) Pseudomonas aeruginosa Working Group Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: activity of ceftolozane/tazobactam and comparators, and molecular epidemiology of carbapenemase producers 2018; 73: 664–671.
Vaez H, Safaei HG, Faghri JJB. The emergence of multidrug-resistant clone ST664 Pseudomonas aeruginosa in a referral burn hospital, Isfahan, Iran. Trauma 2017; 5.
Fazeli H, Sadighian H, Esfahani BN, Pourmand MR. Molecular epidemiology and mechanisms of antimicrobial resistance in Pseudomonas aeruginosa isolates causing burn wound infection in Iran. J Chemother 2014; 26(4): 222–228.
Carvalho KR, Carvalho-Assef APDA, Peirano G, dos Santos LCG, Pereira MJF, Asensi MD. Dissemination of multidrug-resistant Acinetobacter baumannii genotypes carrying blaOXA-23 collected from hospitals in Rio de Janeiro, Brazil. Int J Antimicrob Agents 2009; 34(1): 25–28.
Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid-and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 2000; 44(4): 891–897.
Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns 2014; 40(8): 1556–1561.
Igbinosa EO, Obuekwe IS. Evaluation of antibiotic resistant gene in abattoir environment. J Appl Sci Environ Manag. 2014; 18(2): 165–170.
Atasoy AR, Ciftci IH, Petek M. Modifying enzymes related aminoglycoside: analyses of resistant Acinetobacter isolates. Int J Clin Exp Med 2015; 8(2): 2874.
Hirsch DR, Cox G, D'Erasmo MP, Shakya T, Meck C, Mohd N, et al. Inhibition of the ANT(2″)-Ia resistance enzyme and rescue of aminoglycoside antibiotic activity by synthetic alpha-hydroxytropolones. Bioorg Med Chem Lett 2014; 24(21): 4943–4947. https://doi.org/10.1016/j.bmcl.2014.09.037.
Nie L, Lv Y, Yuan M, Hu X, Nie T, Yang X, et al. Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharmaceutica Sinica B 2014; 4(4): 295–300.
Dumas J-L, Van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254(2): 217–225.
Al-Kabsi AM, Yusof M, Mansor M, Siok Yan GO, Manikam R, Sekaran SD. Multidrug efflux pumps over expression and its association with porin down regulation and β-lactamase production among nosocomial P. aeruginosa isolates from University of Malaya Medical Center, Malaysia. Int J Chem Environ Biol Sci 2015; 3: 125–135.