Authors:
Hedayat Bozorgi Mohajer Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran

Search for other papers by Hedayat Bozorgi Mohajer in
Current site
Google Scholar
PubMed
Close
,
Himen Salimizand Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran

Search for other papers by Himen Salimizand in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2013-8694
,
Dahieh Gharanizadeh Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran

Search for other papers by Dahieh Gharanizadeh in
Current site
Google Scholar
PubMed
Close
,
Afra Hossainpanahi Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran

Search for other papers by Afra Hossainpanahi in
Current site
Google Scholar
PubMed
Close
, and
Rashid Ramazanzadeh Department of Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran

Search for other papers by Rashid Ramazanzadeh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The aim of this study was to determine the frequency of carbapenem resistant Klebsiella pneumoniae (CRKP) sequence types (STs) in Iran. Samples were collected from three university hospitals in Sanandaj, Iran, from December 2016 to March 2018. Antibiotic susceptibility testing, phenotypic and genotypic detection of carbapenemases were performed. Common K. pneumoniae capsular types were sought for all isolates. The genetic relatedness of isolates was investigated by multilocus sequence typing (MLST). Plasmids were detected by PCR-based Replicon Typing (PBRT). During the study, 67 K. pneumoniae isolates were identified. Of which, 18 (26.9%) isolates were detected as carbapenem-resistant. The most effective antibacterial agent was tigecycline (97%, 65 isolates) followed by imipenem and ertapenem (73.13%, 49 isolates). PCR showed that 13 isolates (19.4%) had blaNDM-1 gene and 5 (7.5%) harbored blaOXA-48. Examination of common capsular types showed that 2 isolates had K2 and 2 others had K54. REP-PCR revealed 10 clones and 11 singleton strains. MLST analysis of CRKP found ST15 as the most common type (13 isolates, 72.2%), but other STs were also detected namely, ST19, ST117, ST1390, and ST1594. ColE1 and IncL/M plasmids were the carriers of blaNDM-1 and blaOXA-48, respectively. The results showed that CRKP spread in our health centers. Our results, therefore, indicate a worrying trend of resistance to carbapenems in K. pneumoniae.

  • 1.

    Kochan TJ, Nozick SH, Medernach RL, Cheung BH, Gatesy SWM, Lebrun-Corbin M, et al. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect Dis 2022; 22: 603. https://doi.org/10.1186/s12879-022-07558-1.

    • Search Google Scholar
    • Export Citation
  • 2.

    Yu J, Wang Y, Chen Z, Zhu X, Tian L, Li L, et al. Outbreak of nosocomial NDM-1-producing Klebsiella pneumoniae ST1419 in a neonatal unit. J Glob Antimicrob Resist 2017; 8: 135139. https://doi.org/10.1016/j.jgar.2016.10.014.

    • Search Google Scholar
    • Export Citation
  • 3.

    Chen H-Y, Jean S-S, Lee Y-L, Lu M-C, Ko W-C, Liu P-Y, et al. Carbapenem-resistant enterobacterales in long-term care facilities: a global and narrative review. Front Cell Infect Microbiol 2021; 11: 601968. https://doi.org/10.3389/fcimb.2021.601968.

    • Search Google Scholar
    • Export Citation
  • 4.

    Tamma PD, Goodman KE, Harris AD, Tekle T, Roberts A, Taiwo A, et al. Comparing the outcomes of patients with carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae bacteremia. Clin Infect Dis 2017; 64: 257264. https://doi.org/10.1093/cid/ciw741.

    • Search Google Scholar
    • Export Citation
  • 5.

    Roberts RR, Hota B, Ahmad I, Scott RD 2nd, Foster SD, Abbasi F, et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis 2009; 49: 11751184. https://doi.org/10.1086/605630.

    • Search Google Scholar
    • Export Citation
  • 6.

    Younis AI, Elbialy AI, Remila EMA, Ammar AM. Molecular detection of genus Klebsiella and genotypic identification of Klebsiella pneumoniae and Klebsiella oxytoca by duplex polymerase chain reaction in poultry. Glob Vet 2017; 18: 234241. https://doi.org/10.5829/idosi.gv.2017.234.241.

    • Search Google Scholar
    • Export Citation
  • 7.

    CLSI. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100 (ISBN 1-56238-838-X [Print]; ISBN 1-56238-839-8 [Electronic]). Clinical and Laboratory Standards Institute, 9 2018.

    • Search Google Scholar
    • Export Citation
  • 8.

    Vasoo S, Cunningham SA, Kohner PC, Simner PJ, Mandrekar JN, Lolans K, et al. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. J Clin Microbiol 2013; 51: 30973101. https://doi.org/10.1128/JCM.00965-13.

    • Search Google Scholar
    • Export Citation
  • 9.

    Beresford RW, Maley M. Reduced incubation time of the modified carbapenem inactivation test and performance of carbapenem inactivation in a set of carbapenemase-producing Enterobacteriaceae with a high Proportion of blaIMP isolates. J Clin Microbiol 2019; 57. https://doi.org/10.1128/JCM.01852-18.

    • Search Google Scholar
    • Export Citation
  • 10.

    Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70: 119123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002.

    • Search Google Scholar
    • Export Citation
  • 11.

    Snelling AM, Gerner-Smidt P, Hawkey PM, Heritage J, Parnell P, Porter C, et al. Validation of use of whole-cell repetitive extragenic palindromic sequence-based PCR (REP-PCR) for typing strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii complex and application of the method to the investigation of a hospita. J Clin Microbiol 1996; 34: 11931202. https://doi.org/10.1128/jcm.34.5.1193-1202.1996.

    • Search Google Scholar
    • Export Citation
  • 12.

    Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005; 43: 41784182. https://doi.org/10.1128/JCM.43.8.4178-4182.2005.

    • Search Google Scholar
    • Export Citation
  • 13.

    Turton JF, Perry C, Elgohari S, Hampton CV. PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J Med Microbiol 2010; 59: 541547. https://doi.org/10.1099/jmm.0.015198-0.

    • Search Google Scholar
    • Export Citation
  • 14.

    Mulvey MR, Grant JM, Plewes K, Roscoe D, Boyd DA. New Delhi metallo-β-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerg Infect Dis 2011; 17: 103106. https://doi.org/10.3201/eid1701.101358.

    • Search Google Scholar
    • Export Citation
  • 15.

    Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48: 1522. https://doi.org/10.1128/AAC.48.1.15-22.

    • Search Google Scholar
    • Export Citation
  • 16.

    Villa L, Carattoli A. Plasmid typing and classification. In: de la Cruz, F. (ed.) Horizontal gene transfer methods Mol Biol; 2020, Vol. 2075; 309321. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_22.

    • Search Google Scholar
    • Export Citation
  • 17.

    García-Fernández A, Fortini D, Veldman K, Mevius D, Carattoli A. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. J Antimicrob Chemother 2009; 63: 274281. https://doi.org/10.1093/jac/dkn470.

    • Search Google Scholar
    • Export Citation
  • 18.

    Shin J, Baek JY, Chung DR, Ko KS. Instability of the IncFII-type plasmid carrying blaNDM-5 in a Klebsiella pneumoniae isolate. J Microbiol Biotechnol 2017; 27: 17111715. https://doi.org/10.4014/jmb.1706.06030.

    • Search Google Scholar
    • Export Citation
  • 19.

    Tagg, K.A., Venturini, C., Kamruzzaman, M., Ginn, A.N., Partridge, S.R. Plasmid DNA isolation and visualization: isolation and characterization of plasmids from clinical samples. In: de la Cruz, F. (ed.) Horizontal gene transfer. Methods in molecular Biology; 2020Vol. 2075; 320. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_1.

    • Search Google Scholar
    • Export Citation
  • 20.

    Tu Q, Yin J, Fu J, Herrmann J, Li Y, Yin Y, et al. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Sci Rep 2016; 6: 24648. https://doi.org/10.1038/srep24648.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hosseinzadeh Z, Sedigh Ebrahim-Saraie H, Sarvari J, Mardaneh J, Dehghani B, Rokni-Hosseini SMH, et al. Emerge of blaNDM-1 and blaOXA-48-like harboring carbapenem-resistant Klebsiella pneumoniae isolates from hospitalized patients in southwestern Iran. J Chin Med Assoc 2018; 81: 536540. https://doi.org/10.1016/j.jcma.2017.08.015.

    • Search Google Scholar
    • Export Citation
  • 22.

    Armin S, Fallah F, Azimi L, Samadi Kafil H, Ghazvini K, Hasanzadeh S, et al. Warning: spread of NDM-1 in two border towns of Iran. Cell Mol Biol (Noisy-Le-Grand) 2018; 64: 125129. Available from: https://doi.org/10.14715/cmb/2018.64.10.20.

    • Search Google Scholar
    • Export Citation
  • 23.

    Shahcheraghi F, Nobari S, Rahmati Ghezelgeh F, Nasiri S, Owlia P, Nikbin VS, et al. First report of New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae in Iran. Microb Drug Resist 2013; 19: 3036. Available from: https://doi.org/10.1089/mdr.2012.0078.

    • Search Google Scholar
    • Export Citation
  • 24.

    Al-Zahrani IA, Alsiri BA. The emergence of carbapenem-resistant Klebsiella pneumoniae isolates producing OXA-48 and NDM in the Southern (Asir) province, Saudi Arabia. Saudi Med J 2018; 39: 2330. Available from: https://doi.org/10.15537/smj.2018.1.21094.

    • Search Google Scholar
    • Export Citation
  • 25.

    Nepal K, Pant ND, Neupane B, Belbase A, Baidhya R, Shrestha RK, et al. Extended-spectrum beta-lactamase and metallo-beta-lactamase production among Escherichia coli and Klebsiella pneumoniae isolated from different clinical samples in a tertiary care hospital in Kathmandu, Nepal. Ann Clin Microbiol Antimicrob 2017; 16: 62. Available from: https://doi.org/10.1186/s12941-017-0236-7.

    • Search Google Scholar
    • Export Citation
  • 26.

    Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

    • Search Google Scholar
    • Export Citation
  • 27.

    Shokri D, Rabbani Khorasgani M, Fatemi SM, Soleimani-Delfan A. Resistotyping, phenotyping and genotyping of New Delhi metallo-β-lactamase (NDM) among Gram-negative bacilli from Iranian patients. J Med Microbiol 2017; 66: 402411. https://doi.org/10.1099/jmm.0.000444.

    • Search Google Scholar
    • Export Citation
  • 28.

    Gona F, Bongiorno D, Aprile A, Corazza E, Pasqua B, Scuderi MG, et al. Emergence of two novel sequence types (3366 and 3367) NDM-1- and OXA-48-co-producing K. pneumoniae in Italy. Eur J Clin Microbiol Infect Dis 2019; 38: 16871691. Available from: https://doi.org/10.1007/s10096-019-03597-w.

    • Search Google Scholar
    • Export Citation
  • 29.

    Fazeli H, Norouzi-Barough M, Ahadi AM, Shokri D, Solgi H. Detection of New Delhi Metallo-Beta-Lactamase-1 (NDM-1) in carbapenem- resistant Klebsiella pneumoniae isolated from a university hospital in Iran. Hippokratia 2015; 19: 205209.

    • Search Google Scholar
    • Export Citation
  • 30.

    Solgi H, Badmasti F, Aminzadeh Z, Giske CG, Pourahmad M, Vaziri F, et al. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of blaNDM-7 and blaOXA-48. Eur J Clin Microbiol Infect Dis 2017; 36: 21272135. Available from: https://doi.org/10.1007/s10096-017-3035-3.

    • Search Google Scholar
    • Export Citation
  • 31.

    Shoja S, Ansari M, Faridi F, Azad M, Davoodian P, Javadpour S, et al. Identification of carbapenem-resistant Klebsiella pneumoniae with emphasis on New Delhi metallo-beta-lactamase-1 (blaNDM-1) in bandar Abbas, South of Iran. Microb Drug Resist 2018; 24: 447454. Available from: https://doi.org/10.1089/mdr.2017.0058.

    • Search Google Scholar
    • Export Citation
  • 32.

    Djahmi N, Dunyach-Remy C, Pantel A, Dekhil M, Sotto A, Lavigne J-P. Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in mediterranean countries. Biomed Res Int 2014; 2014: 305784. https://doi.org/10.1155/2014/305784.

    • Search Google Scholar
    • Export Citation
  • 33.

    Adler A, Shklyar M, Schwaber MJ, Navon-Venezia S, Dhaher Y, Edgar R, et al. Introduction of OXA-48-producing Enterobacteriaceae to Israeli hospitals by medical tourism. J Antimicrob Chemother 2011; 66: 27632766. https://doi.org/10.1093/jac/dkr382.

    • Search Google Scholar
    • Export Citation
  • 34.

    Azimi L, Nordmann P, Lari AR, Bonnin RA. First report of OXA-48-producing Klebsiella pneumoniae strains in Iran. GMS Hyg Infect Control 2014; 9: Doc07. https://doi.org/10.3205/dgkh000227.

    • Search Google Scholar
    • Export Citation
  • 35.

    Moghadampour M, Rezaei A, Faghri J. The emergence of blaOXA-48 and blaNDM among ESBL-producing Klebsiella pneumoniae in clinical isolates of a tertiary hospital in Iran. Acta Microbiol Immunol Hung 2018; 65: 335344. https://doi.org/10.1556/030.65.2018.034.

    • Search Google Scholar
    • Export Citation
  • 36.

    Solgi H, Badmasti F, Giske CG, Aghamohammad S, Shahcheraghi F. Molecular epidemiology of NDM-1- and OXA-48-producing Klebsiella pneumoniae in an Iranian hospital: clonal dissemination of ST11 and ST893. J Antimicrob Chemother 2018; 73: 15171524. https://doi.org/10.1093/jac/dky081.

    • Search Google Scholar
    • Export Citation
  • 37.

    Aslani S, Kiaei S, Afgar A, Morones-Ramírez JR, Aratboni HA, Faridi A, et al. Determination of incompatibility group plasmids and copy number of the blaNDM-1 gene in carbapenem-resistant Klebsiella pneumoniae strains recovered from different hospitals in Kerman, Iran. J Med Microbiol 2021; 70. https://doi.org/10.1099/jmm.0.001361.

    • Search Google Scholar
    • Export Citation
  • 38.

    Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 2016; 7: 895. https://doi.org/10.3389/fmicb.2016.00895.

    • Search Google Scholar
    • Export Citation
  • 39.

    Wyres KL, Holt KE. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol 2016; 24: 944956. https://doi.org/10.1016/j.tim.2016.09.007.

    • Search Google Scholar
    • Export Citation
  • 40.

    Tekeli A, Dolapci İ, Evren E, Oguzman E, Karahan ZC. Characterization of Klebsiella pneumoniae coproducing KPC and NDM-1 carbapenemases from Turkey. Microb Drug Resist 2020; 26: 118125. https://doi.org/10.1089/mdr.2019.0086.

    • Search Google Scholar
    • Export Citation
  • 41.

    Poirel L, Yilmaz M, Istanbullu A, Arslan F, Mert A, Bernabeu S, et al. Spread of NDM-1-producing Enterobacteriaceae in a neonatal intensive care unit in Istanbul, Turkey. Antimicrob Agents Chemother 2014; 58: 29292933. https://doi.org/10.1128/AAC.02047-13.

    • Search Google Scholar
    • Export Citation
  • 42.

    Heinz E, Ejaz H, Bartholdson Scott J, Wang N, Gujaran S, Pickard D, et al. Resistance mechanisms and population structure of highly drug resistant Klebsiella in Pakistan during the introduction of the carbapenemase NDM-1. Sci Rep 2019; 9: 2392. Available from: https://doi.org/10.1038/s41598-019-38943-7.

    • Search Google Scholar
    • Export Citation
  • 43.

    Aghamohammad S, Badmasti F, Solgi H, Aminzadeh Z, Khodabandelo Z, Shahcheraghi F. First report of extended-spectrum betalactamase-producing Klebsiella pneumoniae among fecal carriage in Iran: high diversity of clonal relatedness and virulence factor profiles. Microb Drug Resist 2020; 26: 261269. https://doi.org/10.1089/mdr.2018.0181.

    • Search Google Scholar
    • Export Citation
  • 44.

    Jamal WY, Albert MJ, Khodakhast F, Poirel L, Rotimi VO. Emergence of new sequence type OXA-48 carbapenemase-producing Enterobacteriaceae in Kuwait. Microb Drug Resist 2015; 21: 329334. https://doi.org/10.1089/mdr.2014.0123.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 71 0 0
Apr 2024 49 1 1
May 2024 33 0 0
Jun 2024 44 0 1
Jul 2024 80 1 2
Aug 2024 55 0 0
Sep 2024 24 1 2