The aim of this study was to determine the frequency of carbapenem resistant Klebsiella pneumoniae (CRKP) sequence types (STs) in Iran. Samples were collected from three university hospitals in Sanandaj, Iran, from December 2016 to March 2018. Antibiotic susceptibility testing, phenotypic and genotypic detection of carbapenemases were performed. Common K. pneumoniae capsular types were sought for all isolates. The genetic relatedness of isolates was investigated by multilocus sequence typing (MLST). Plasmids were detected by PCR-based Replicon Typing (PBRT). During the study, 67 K. pneumoniae isolates were identified. Of which, 18 (26.9%) isolates were detected as carbapenem-resistant. The most effective antibacterial agent was tigecycline (97%, 65 isolates) followed by imipenem and ertapenem (73.13%, 49 isolates). PCR showed that 13 isolates (19.4%) had blaNDM-1 gene and 5 (7.5%) harbored blaOXA-48. Examination of common capsular types showed that 2 isolates had K2 and 2 others had K54. REP-PCR revealed 10 clones and 11 singleton strains. MLST analysis of CRKP found ST15 as the most common type (13 isolates, 72.2%), but other STs were also detected namely, ST19, ST117, ST1390, and ST1594. ColE1 and IncL/M plasmids were the carriers of blaNDM-1 and blaOXA-48, respectively. The results showed that CRKP spread in our health centers. Our results, therefore, indicate a worrying trend of resistance to carbapenems in K. pneumoniae.
Kochan TJ, Nozick SH, Medernach RL, Cheung BH, Gatesy SWM, Lebrun-Corbin M, et al. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect Dis 2022; 22: 603. https://doi.org/10.1186/s12879-022-07558-1.
Yu J, Wang Y, Chen Z, Zhu X, Tian L, Li L, et al. Outbreak of nosocomial NDM-1-producing Klebsiella pneumoniae ST1419 in a neonatal unit. J Glob Antimicrob Resist 2017; 8: 135–139. https://doi.org/10.1016/j.jgar.2016.10.014.
Chen H-Y, Jean S-S, Lee Y-L, Lu M-C, Ko W-C, Liu P-Y, et al. Carbapenem-resistant enterobacterales in long-term care facilities: a global and narrative review. Front Cell Infect Microbiol 2021; 11: 601968. https://doi.org/10.3389/fcimb.2021.601968.
Tamma PD, Goodman KE, Harris AD, Tekle T, Roberts A, Taiwo A, et al. Comparing the outcomes of patients with carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae bacteremia. Clin Infect Dis 2017; 64: 257–264. https://doi.org/10.1093/cid/ciw741.
Roberts RR, Hota B, Ahmad I, Scott RD 2nd, Foster SD, Abbasi F, et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis 2009; 49: 1175–1184. https://doi.org/10.1086/605630.
Younis AI, Elbialy AI, Remila EMA, Ammar AM. Molecular detection of genus Klebsiella and genotypic identification of Klebsiella pneumoniae and Klebsiella oxytoca by duplex polymerase chain reaction in poultry. Glob Vet 2017; 18: 234–241. https://doi.org/10.5829/idosi.gv.2017.234.241.
CLSI. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100 (ISBN 1-56238-838-X [Print]; ISBN 1-56238-839-8 [Electronic]). Clinical and Laboratory Standards Institute, 9 2018.
Vasoo S, Cunningham SA, Kohner PC, Simner PJ, Mandrekar JN, Lolans K, et al. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. J Clin Microbiol 2013; 51: 3097–3101. https://doi.org/10.1128/JCM.00965-13.
Beresford RW, Maley M. Reduced incubation time of the modified carbapenem inactivation test and performance of carbapenem inactivation in a set of carbapenemase-producing Enterobacteriaceae with a high Proportion of blaIMP isolates. J Clin Microbiol 2019; 57. https://doi.org/10.1128/JCM.01852-18.
Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70: 119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002.
Snelling AM, Gerner-Smidt P, Hawkey PM, Heritage J, Parnell P, Porter C, et al. Validation of use of whole-cell repetitive extragenic palindromic sequence-based PCR (REP-PCR) for typing strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii complex and application of the method to the investigation of a hospita. J Clin Microbiol 1996; 34: 1193–1202. https://doi.org/10.1128/jcm.34.5.1193-1202.1996.
Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005; 43: 4178–4182. https://doi.org/10.1128/JCM.43.8.4178-4182.2005.
Turton JF, Perry C, Elgohari S, Hampton CV. PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J Med Microbiol 2010; 59: 541–547. https://doi.org/10.1099/jmm.0.015198-0.
Mulvey MR, Grant JM, Plewes K, Roscoe D, Boyd DA. New Delhi metallo-β-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerg Infect Dis 2011; 17: 103–106. https://doi.org/10.3201/eid1701.101358.
Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48: 15–22. https://doi.org/10.1128/AAC.48.1.15-22.
Villa L, Carattoli A. Plasmid typing and classification. In: de la Cruz, F. (ed.) Horizontal gene transfer methods Mol Biol; 2020, Vol. 2075; 309–321. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_22.
García-Fernández A, Fortini D, Veldman K, Mevius D, Carattoli A. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. J Antimicrob Chemother 2009; 63: 274–281. https://doi.org/10.1093/jac/dkn470.
Shin J, Baek JY, Chung DR, Ko KS. Instability of the IncFII-type plasmid carrying blaNDM-5 in a Klebsiella pneumoniae isolate. J Microbiol Biotechnol 2017; 27: 1711–1715. https://doi.org/10.4014/jmb.1706.06030.
Tagg, K.A., Venturini, C., Kamruzzaman, M., Ginn, A.N., Partridge, S.R. Plasmid DNA isolation and visualization: isolation and characterization of plasmids from clinical samples. In: de la Cruz, F. (ed.) Horizontal gene transfer. Methods in molecular Biology; 2020, Vol. 2075; 3–20. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_1.
Tu Q, Yin J, Fu J, Herrmann J, Li Y, Yin Y, et al. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Sci Rep 2016; 6: 24648. https://doi.org/10.1038/srep24648.
Hosseinzadeh Z, Sedigh Ebrahim-Saraie H, Sarvari J, Mardaneh J, Dehghani B, Rokni-Hosseini SMH, et al. Emerge of blaNDM-1 and blaOXA-48-like harboring carbapenem-resistant Klebsiella pneumoniae isolates from hospitalized patients in southwestern Iran. J Chin Med Assoc 2018; 81: 536–540. https://doi.org/10.1016/j.jcma.2017.08.015.
Armin S, Fallah F, Azimi L, Samadi Kafil H, Ghazvini K, Hasanzadeh S, et al. Warning: spread of NDM-1 in two border towns of Iran. Cell Mol Biol (Noisy-Le-Grand) 2018; 64: 125–129. Available from: https://doi.org/10.14715/cmb/2018.64.10.20.
Shahcheraghi F, Nobari S, Rahmati Ghezelgeh F, Nasiri S, Owlia P, Nikbin VS, et al. First report of New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae in Iran. Microb Drug Resist 2013; 19: 30–36. Available from: https://doi.org/10.1089/mdr.2012.0078.
Al-Zahrani IA, Alsiri BA. The emergence of carbapenem-resistant Klebsiella pneumoniae isolates producing OXA-48 and NDM in the Southern (Asir) province, Saudi Arabia. Saudi Med J 2018; 39: 23–30. Available from: https://doi.org/10.15537/smj.2018.1.21094.
Nepal K, Pant ND, Neupane B, Belbase A, Baidhya R, Shrestha RK, et al. Extended-spectrum beta-lactamase and metallo-beta-lactamase production among Escherichia coli and Klebsiella pneumoniae isolated from different clinical samples in a tertiary care hospital in Kathmandu, Nepal. Ann Clin Microbiol Antimicrob 2017; 16: 62. Available from: https://doi.org/10.1186/s12941-017-0236-7.
Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Shokri D, Rabbani Khorasgani M, Fatemi SM, Soleimani-Delfan A. Resistotyping, phenotyping and genotyping of New Delhi metallo-β-lactamase (NDM) among Gram-negative bacilli from Iranian patients. J Med Microbiol 2017; 66: 402–411. https://doi.org/10.1099/jmm.0.000444.
Gona F, Bongiorno D, Aprile A, Corazza E, Pasqua B, Scuderi MG, et al. Emergence of two novel sequence types (3366 and 3367) NDM-1- and OXA-48-co-producing K. pneumoniae in Italy. Eur J Clin Microbiol Infect Dis 2019; 38: 1687–1691. Available from: https://doi.org/10.1007/s10096-019-03597-w.
Fazeli H, Norouzi-Barough M, Ahadi AM, Shokri D, Solgi H. Detection of New Delhi Metallo-Beta-Lactamase-1 (NDM-1) in carbapenem- resistant Klebsiella pneumoniae isolated from a university hospital in Iran. Hippokratia 2015; 19: 205–209.
Solgi H, Badmasti F, Aminzadeh Z, Giske CG, Pourahmad M, Vaziri F, et al. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of blaNDM-7 and blaOXA-48. Eur J Clin Microbiol Infect Dis 2017; 36: 2127–2135. Available from: https://doi.org/10.1007/s10096-017-3035-3.
Shoja S, Ansari M, Faridi F, Azad M, Davoodian P, Javadpour S, et al. Identification of carbapenem-resistant Klebsiella pneumoniae with emphasis on New Delhi metallo-beta-lactamase-1 (blaNDM-1) in bandar Abbas, South of Iran. Microb Drug Resist 2018; 24: 447–454. Available from: https://doi.org/10.1089/mdr.2017.0058.
Djahmi N, Dunyach-Remy C, Pantel A, Dekhil M, Sotto A, Lavigne J-P. Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in mediterranean countries. Biomed Res Int 2014; 2014: 305784. https://doi.org/10.1155/2014/305784.
Adler A, Shklyar M, Schwaber MJ, Navon-Venezia S, Dhaher Y, Edgar R, et al. Introduction of OXA-48-producing Enterobacteriaceae to Israeli hospitals by medical tourism. J Antimicrob Chemother 2011; 66: 2763–2766. https://doi.org/10.1093/jac/dkr382.
Azimi L, Nordmann P, Lari AR, Bonnin RA. First report of OXA-48-producing Klebsiella pneumoniae strains in Iran. GMS Hyg Infect Control 2014; 9: Doc07. https://doi.org/10.3205/dgkh000227.
Moghadampour M, Rezaei A, Faghri J. The emergence of blaOXA-48 and blaNDM among ESBL-producing Klebsiella pneumoniae in clinical isolates of a tertiary hospital in Iran. Acta Microbiol Immunol Hung 2018; 65: 335–344. https://doi.org/10.1556/030.65.2018.034.
Solgi H, Badmasti F, Giske CG, Aghamohammad S, Shahcheraghi F. Molecular epidemiology of NDM-1- and OXA-48-producing Klebsiella pneumoniae in an Iranian hospital: clonal dissemination of ST11 and ST893. J Antimicrob Chemother 2018; 73: 1517–1524. https://doi.org/10.1093/jac/dky081.
Aslani S, Kiaei S, Afgar A, Morones-Ramírez JR, Aratboni HA, Faridi A, et al. Determination of incompatibility group plasmids and copy number of the blaNDM-1 gene in carbapenem-resistant Klebsiella pneumoniae strains recovered from different hospitals in Kerman, Iran. J Med Microbiol 2021; 70. https://doi.org/10.1099/jmm.0.001361.
Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 2016; 7: 895. https://doi.org/10.3389/fmicb.2016.00895.
Wyres KL, Holt KE. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol 2016; 24: 944–956. https://doi.org/10.1016/j.tim.2016.09.007.
Tekeli A, Dolapci İ, Evren E, Oguzman E, Karahan ZC. Characterization of Klebsiella pneumoniae coproducing KPC and NDM-1 carbapenemases from Turkey. Microb Drug Resist 2020; 26: 118–125. https://doi.org/10.1089/mdr.2019.0086.
Poirel L, Yilmaz M, Istanbullu A, Arslan F, Mert A, Bernabeu S, et al. Spread of NDM-1-producing Enterobacteriaceae in a neonatal intensive care unit in Istanbul, Turkey. Antimicrob Agents Chemother 2014; 58: 2929–2933. https://doi.org/10.1128/AAC.02047-13.
Heinz E, Ejaz H, Bartholdson Scott J, Wang N, Gujaran S, Pickard D, et al. Resistance mechanisms and population structure of highly drug resistant Klebsiella in Pakistan during the introduction of the carbapenemase NDM-1. Sci Rep 2019; 9: 2392. Available from: https://doi.org/10.1038/s41598-019-38943-7.
Aghamohammad S, Badmasti F, Solgi H, Aminzadeh Z, Khodabandelo Z, Shahcheraghi F. First report of extended-spectrum betalactamase-producing Klebsiella pneumoniae among fecal carriage in Iran: high diversity of clonal relatedness and virulence factor profiles. Microb Drug Resist 2020; 26: 261–269. https://doi.org/10.1089/mdr.2018.0181.
Jamal WY, Albert MJ, Khodakhast F, Poirel L, Rotimi VO. Emergence of new sequence type OXA-48 carbapenemase-producing Enterobacteriaceae in Kuwait. Microb Drug Resist 2015; 21: 329–334. https://doi.org/10.1089/mdr.2014.0123.