Authors:
Mehdi Goudarzi Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Mehdi Goudarzi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6720-9341
,
Simasadat Seyedjavadi Department of Mycology, Pasteur Institute of Iran, Tehran, Iran

Search for other papers by Simasadat Seyedjavadi in
Current site
Google Scholar
PubMed
Close
,
Parmida Bagheri Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Search for other papers by Parmida Bagheri in
Current site
Google Scholar
PubMed
Close
,
Masoud Dadashi Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

Search for other papers by Masoud Dadashi in
Current site
Google Scholar
PubMed
Close
, and
Mohammad Javad Nasiri Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Mohammad Javad Nasiri in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The literature on fusidic acid resistant Staphylococcus aureus strains is scarce in Iran, although the emergence of these strains in health care settings is increasing. This descriptive cross-sectional study was conducted on 68 fusidic acid resistant S. aureus strains to learn about the molecular characteristics and antimicrobial resistance of strains isolated from hospitalized patients. In the present study, the prevalence of resistance to fusidic acid in S. aureus isolates was 15.1%. Fusidic acid resistance determinative factors (fusB, fusC and fusD) were identified by multiplex PCR assay. To detect the existence of fusA and fusE determinants and their mutation status, amplifications and sequencing were performed. Molecular characterization of fusidic acid resistant isolates was investigated by SCCmec and spa typing methods. All strains were MRSA and multi drug resistant. Two (2.9%) and 31 (45.6%) isolates were resistant to vancomycin and mupirocin respectively. The SCCmec type IV was highly prevalent representing 50% followed by types III (51.5%), and SCCmec types II (13.2%). fusB, was the most predominant acquired gene (66.2%) followed by fusC (19.1%), and fusA (14.7%). The mutations in fusA were present in 10 isolates with 5 (50%) having L461K mutation showing fusidic acid MIC values of ≥256 μg ml−1 followed by H457Y (40%), and H457Q (10%) showing fusidic acid MIC values of 128 and 64 μg ml−1 respectively. Isolates were allocated to ten particular t030 (22.1%), t037 (14.6%), t408 (11.8%), t064 (11.8%), t008 (10.3%), t002 (8.8%), t005 (5.9%), t790 (5.9%), t318 (4.4%), and t018 (4.4%) spa types. fusA positive isolates were assigned to particular spa types t002 (60%), and t005 (40%). There may be be a spreading of fusidic acid resistance among MRSA, creating worrying public concern. This research notes the importance of adequate data of local prevalence of FA-resistant MRSA in Iran for taking appropriate measures to treat, control and reduce the incidence of these isolates.

  • 1.

    Cheung GY, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12: 547569. https://doi.org/10.1080/21505594.2021.1878688.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019; 17: 203218. https://doi.org/10.1038/s41579-018-0147-4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2017; 41: 430449. https://doi.org/10.1093/femsre/fux007.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Tomlinson JH, Kalverda AP, Calabrese AN. Fusidic acid resistance through changes in the dynamics of the drug target. Proc Natl Acad Sci 2020; 117: 2552325531. https://doi.org/10.1073/pnas.2008577117.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Al-Saleh A, Shahid M, Farid E, Bindayna K. Trends in methicillin-resistant Staphylococcus aureus in the Gulf Cooperation Council countries: antibiotic resistance, virulence factors and emerging strains. East Mediterr Health J 2022; 28: 434443. https://doi.org/10.26719/emhj.22.042.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Besier S, Ludwig A, Brade V, Wichelhaus TA. Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol 2003; 47: 463469. https://doi.org/10.1046/j.1365-2958.2003.03307.x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hajikhani B, Goudarzi M, Kakavandi S, Amini S, Zamani S, van Belkum A, et al. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2021; 10: 75. https://doi.org/10.1186/s13756-021-00943-6.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Boloki HA, Al-Musaileem WF, AlFouzan W, Verghese T, Udo EE. Fusidic acid resistance determinants in methicillin-resistant Staphylococcus aureus isolated in Kuwait hospitals. Med Princ Pract 2021; 30: 542549. https://doi.org/10.1159/000518408.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Den Heijer CD, Van Bijnen EM, Paget WJ, Stobberingh EE. Fusidic acid resistance in Staphylococcus aureus nasal carriage strains in nine European countries. Future Microbiol 2014; 9: 737745. https://doi.org/10.2217/fmb.14.36.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Goudarzi M, Kobayashi N, Dadashi M, Pantůček R, Nasiri MJ, Fazeli M, et al. Prevalence, genetic diversity, and temporary shifts of inducible clindamycin resistance Staphylococcus aureus clones in Tehran, Iran: a molecular–epidemiological analysis from 2013 to 2018. Front Microbiol 2020; 11: 663. https://doi.org/10.3389/fmicb.2020.00663.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 31th Informational Supplement. CLSI document M100-S27. 1-56238-805-3; 2021.

    • Search Google Scholar
    • Export Citation
  • 12.

    Goudarzi M, Tayebi Z, Dadashi M, Miri M, Amirpour A, Fazeli M. Characteristics of community-acquired methicillin-resistant Staphylococcus aureus associated with wound infections in Tehran, Iran: high prevalence of PVL+ t008 and the emergence of new spa types t657, t5348, and t437 in Iran. Gene Rep 2020; 19, 100603. https://doi.org/10.1016/j.genrep.2020.100603.

    • Search Google Scholar
    • Export Citation
  • 13.

    Castanheira M, Watters AA, Mendes RE, Farrell DJ, Jones RN. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). J Antimicrob Chemother 2010; 65: 13531358. https://doi.org/10.1093/jac/dkq094.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chen H-J, Hung W-C, Tseng S-P, Tsai J-C, Hsueh P-R, Teng L-J. Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 2010; 54: 49854991. https://doi.org/10.1128/AAC.00523-10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Boye K, Bartels M, Andersen I, Møller J, Westh H. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I–V. Clin Microbiol Infect 2007; 13: 725727. https://doi.org/10.1111/j.1469-0691.2007.01720.x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Udo EE, Al-Sweih N, Mokaddas E, Johny M, Dhar R, Gomaa HH, et al. Antibacterial resistance and their genetic location in MRSA isolated in Kuwait hospitals, 1994-2004. BMC Infect Dis 2006; 6: 18. https://doi.org/10.1186/1471-2334-6-168.

    • Search Google Scholar
    • Export Citation
  • 17.

    Razeghi M, Saffarian P, Goudarzi M. Incidence of inducible clindamycin resistance and antibacterial resistance genes variability in clinical Staphylococcus aureus strains: a two-year multicenter study in Tehran, Iran. Gene Rep 2019; 16, 100411. https://doi.org/10.1016/j.genrep.2019.100411.

    • Search Google Scholar
    • Export Citation
  • 18.

    Zamani S, Mohammadi A, Hajikhani B, Abiri P, Fazeli M, Nasiri MJ, et al. Mupirocin-resistant Staphylococcus aureus in Iran: a biofilm production and genetic characteristics. Biomed Res Int 2022; 15: 19. https://doi.org/10.1155/2022/7408029.

    • Search Google Scholar
    • Export Citation
  • 19.

    Rahimi F, Bouzari M, Katouli M, Pourshafie MR. Antibiotic resistance pattern of methicillin resistant and methicillin sensitive Staphylococcus aureus isolates in Tehran, Iran. Jundishapur J Microbiol 2013; 6: 144149. https://doi.org/10.5812/jjm.4896.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hasani A, Sheikhalizadeh V, Hasani A, Naghili B, Valizadeh V, Nikoonijad AR. Methicillin resistant and susceptible Staphylococcus aureus: appraising therapeutic approaches in the Northwest of Iran. Iranian J Microbiol 2013; 5: 5662.

    • Search Google Scholar
    • Export Citation
  • 21.

    Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev 2017; 30: 827860. https://doi.org/10.1128/CMR.00112-16.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S, Darban-Sarokhalil D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep 2020; 10: 116. https://doi.org/10.1038/s41598-020-69058-z.

    • Search Google Scholar
    • Export Citation
  • 23.

    Yu F, Liu Y, Lu C, Lv J, Qi X, Ding Y, et al. Dissemination of fusidic acid resistance among Staphylococcus aureus clinical isolates. BMC Microbiol 2015; 15: 16. https://doi.org/10.1186/s12866-015-0552-z.

    • Search Google Scholar
    • Export Citation
  • 24.

    Rijnders M, Wolffs P, Hopstaken R, Den Heyer M, Bruggeman C, Stobberingh E. Spread of the epidemic European fusidic acid-resistant impetigo clone (EEFIC) in general practice patients in the south of The Netherlands. J Antimicrob Chemother 2012; 67: 11761180. https://doi.org/10.1093/jac/dkr590.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McLaws F, Larsen A, Skov R, Chopra I, O'Neill A. Distribution of fusidic acid resistance determinants in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55: 11731176. https://doi.org/10.1128/AAC.00817-10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chen C-M, Huang M, Chen H-F, Ke S-C, Li C-R, Wang J-H, et al. Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC Microbiol 2011; 11: 18. https://doi.org/10.1186/1471-2180-11-98.

    • Search Google Scholar
    • Export Citation
  • 27.

    Zhao H, Wang X, Wang B, Xu Y, Rao L, Wan B, et al. The prevalence and determinants of fusidic acid resistance among methicillin-resistant Staphylococcus aureus clinical isolates in China. Front Med 2021; 8, 761894. https://doi.org/10.3389/fmed.2021.761894.

    • Search Google Scholar
    • Export Citation
  • 28.

    Castanheira M, Watters AA, Bell JM, Turnidge JD, Jones RN. Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007–2008. Antimicrob Agents Chemother 2010; 54: 36143617. https://doi.org/10.1128/AAC.01390-09.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gülmez D, Sancak B, Ercis S, Karakaya J, Hascelik G. Investigation of SCCmec types and Panton-Valentine leukocidin in community-acquired and nosocomial Staphylococcus aureus strains: comparing skin and soft tissue infections to the other infections. Mikrobiyol Bul 2012; 46(3): 341351.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2024 67 0 0
Jun 2024 72 0 1
Jul 2024 58 0 0
Aug 2024 48 0 0
Sep 2024 65 0 0
Oct 2024 205 1 1
Nov 2024 57 0 0