Mycobacterium fortuitum is a clinically important species among nontuberculous mycobacteria (NTM). Treatment of diseases caused by NTM is challenging. The aim of this study was identification of drug susceptibility and detection of mutations in erm(39) related to clarithromycin resistance and in rrl related to linezolid resistance in clinical isolates of M. fortuitum in Iran. In the study, 328 clinical NTM isolates were subjected to identification based on rpoB and 15% of isolates were assigned to M. fortuitum. Minimum inhibitory concentration for clarithromycin and linezolid was determined by E-test. Altogether 64% of M. fortuitum isolates showed resistanc to clarithromycin and 18% of M. fortuitum isolates showed resistance to linezolid. PCR and DNA sequencing were performed in erm(39) and in rrl genes for detection of mutations related to clarithromycin and linezolid resistance, respectively. Sequencing analysis revealed (84.37%) single nucleotide polymorphisms in the erm(39). A total 55.55% of M. fortuitum isolates harbored an A→G, 14.81% harbored an C→A, 29.62% harbored an G→T mutation in erm(39) at position 124, 135, 275. Seven strains harbored point mutation in the rrl gene either at T2131C or at A2358G. Our findings showed M. fortuitum isolates have become a serious problem with high-level antibiotic resistance. The existence of drug resistance to clarithromycin and linezolid indicates more attention to the study of drug resistance in M. fortuitum.
Muñoz-Egea MC, Akir A, Esteban J. Mycobacterium biofilms. Biofilm 2023; 5: 100107. https://doi.org/10.1016/j.bioflm.2023.100107.
Hashemzadeh M, Dezfuli AA, Khosravi AD, Bandbal MM, Ghorbani A, Hamed M, Dezfuli SK. Molecular identification of non-tuberculous mycobacterial species isolated from extrapulmonary samples using real-time PCR and rpoB sequence analysis. AMB Express 2023; 13(1): 1–6. https://doi.org/10.1186/s13568-023-01553-8.
Koh, WJ, Jeong, BH, Kim, SY, Jeon, K, Park, KU, Jhun, BW, et al. Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin Infect Dis 2017; 64: 309–316. https://doi.org/10.1093/cid/ciw724.
Hashemi-Shahraki A, Darban Sarokhalil D, Heidarieh P, Feizabadi MM, Deshmir-Salameh S, Khazaee S, et al. Mycobacterium simiae, a possible emerging pathogen in Iran. Jpn J Infect Dis 2013; 66: 475-479. https://doi.org/10.7883/yoken.66.475.
Nash KA, Zhang Y, Brown-Elliott BA, Wallace RJ. Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. J Antimicrob Chemother 2005; 55: 170–177. https://doi.org/10.1093/jac/dkh523.
Hashemi-Shahraki A, Bostanabad SZ, Heidarieh P, Titov LP, Khosravi AD, Sheikhi N, et al. Species spectrum of nontuberculous mycobacteria isolated from suspected tuberculosis patients, identification by multi locus sequence analysis. Infect Genet Evol 2013; 20: 312–324. https://doi.org/10.1016/j.meegid.2013.08.027.
Shojaei H, Heidarieh P, Hashemi A, Feizabadi MM, Naser AD. Species identification of neglected nontuberculous mycobacteria in a developing country. Jpn J Infect Dis 2011; 64: 265–271.
Tabarsi P, Baghaei P, Farnia P, Mansouri N, Chitsaz E, Sheikholeslam F, et al. Nontuberculous mycobacteria among patients who are suspected for multidrugresistant tuberculosis-need for earlier identification of nontuberculosis mycobacteria. Am J Med Sci 2009; 337: 182–184. https://doi.org/10.1097/maj.0b013e318185d32f.
Shahraki AH, Heidarieh P, Bostanabad SZ, Khosravi AD, Hashemzadeh M, Khandan S, et al. Multidrug-resistant tuberculosis may be nontuberculous mycobacteria. Eur J Intern Med 2015; 26: 279–284. https://doi.org/10.1016/j.ejim.2015.03.001.
Van Ingen J, Boeree MJ, van Soolingen D, Mouton JW. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 2012; 15: 149-161. https://doi.org/10.1016/j.drup.2012.04.001.
Ruszniewski P, Soufflet C, Barthélémy P. Nonsteroidal anti-inflammatory drug use as a risk factor for gastro-oesophageal reflux disease: an observational study. Aliment Pharmacol Ther 2008; 28: 1134–1139. https://doi.org/10.1111/j.1365-2036.2008.03821.x.
Nie W, Duan H, Huang H, Lu Y, Chu N. Species identification and clarithromycin susceptibility testing of 278 clinical nontuberculosis Mycobacteria isolates. Biomed Res Int 2015; 2015: 506598. https://doi.org/10.1155/2015/506598.
Clinical and Laboratory Standards Institute, “Susceptibility testing of mycobacteria, norcardiae, and other aerobic actinomycetes; approved standard”, CLSI Document M24-A, CLSI, Wayne, Pa, USA, 2011.
Zhu YC, Mitchell KK, Nazarian EJ, Escuyer VE, Musser KA. Rapid prediction of inducible clarithromycin resistance in Mycobacterium abscessus. Mol Cell Probes 2015; 29: 514–516. https://doi.org/10.1016/j.mcp.2015.08.007.
Cowman S, Burns K, Benson S, Wilson R, Loebinger MR. The antimicrobial susceptibility of non-tuberculous mycobacteria. J Infect 2016; 72: 324-331. https://doi.org/10.1016/j.jinf.2015.12.007.
Wenjuan N, Hongfei D, Hairong H, Yu L, Naihui C. Species identification and clarithromycin susceptibility testing of 278 clinical nontuberculosis mycobacteria isolates. Biomed Res Int 2016; 2015: 506598. https://doi.org/10.1155/2015/506598.
Bastian S, Veziris N, Roux AL, Brossier F, Gaillard JL, Jarlier V, et al. Assessment of clarithromycin susceptibility in strains belonging tothe Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother.2011; 55: 775-781. https://doi.org/10.1128/AAC.00861-10.
Rubio M, March F, Garrigó M, Moreno C, Español M, Coll P. Inducible and acquired clarithromycin resistance in the Mycobacterium abscessus complex. PLoS One 2015; 8: 10: e0140166. https://doi.org/10.1371/journal.pone.0140166.
Mahon CR, Lehman DC, Manuselis G Jr. Textbook of diagnostic microbiology. St. Louis, MI: Saunders; 2014.
Adékambi T, Colson P, Drancourt M. rpoB-based identification of non-pigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 2003: 41, 5699–5708. https://doi.org/10.1128/JCM.41.12.5699-5708.2003.
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870–1874. https://doi.org/10.1093/molbev/msw054.
Radzniwan MR, Tohid H, Ahmad S, Mohd AF, Anshar FM. Isolation of Mycobacterium fortuitum in sputum specimens of a patient with chronic cough: is it clinically significant? Malays Fam Physician 2014; 9: 38.
Guo Q, Chu H, Ye M, Zhang Z, Li B, Yang S, et al. The clarithromycin susceptibility genotype affects the treatment outcome of patients with Mycobacterium abscessus lung disease. Antimicrob Agents Chemother 2018; 62: e02360–17. https://doi.org/10.1128/AAC.02360-17.
Liu H, Lian L, Jiang Y, Huang M, Tan Y, Zhao X, et al. Identification of species of nontuberculous mycobacteria clinical isolates from 8 provinces of China. Biomed Res Int 2016; 2: 2153910. https://doi.org/10.1155/2016/2153910.
Khosravi AD, Mirsaeidi M, Farahani A, Tabandeh MR, Mohajeri P, Shoja S, et al. Prevalence of nontuberculous mycobacteria and high efficacy of D-cycloserine and its synergistic effect with clarithromycin against Mycobacterium fortuitum and Mycobacterium abscessus. Infect Drug Resist 2018; 11: 2521. https://doi.org/10.2147/IDR.S187554.
Pereira AC, Ramos B, Reis AC, Cunha MV. Non-tuberculous mycobacteria: molecular and physiological bases of virulence and adaptation to ecological niches. Microorganisms 2020; 8:1380. https://doi.org/10.3390/microorganisms8091380.
Parvin H, Hasan S, Mohamad Mehdi F, Asghar H, Abodolrazagh H, Behrooz A, et al. Molecular identification and conventional susceptibility testing of iranian clinical mycobacterium fortuitum isolates 2010; 13: 210-215. http://ijbms.mums.ac.ir/article_5065.html.
Saxena S, Spaink HP, Forn-Cuní G. Drug. Resistance in nontuberculous mycobacteria: mechanisms and models. Biology 2021, 10:96. https://doi.org/10.3390/biology10020096.
Kim HY, Kim BJ, Kook Y, Yun YJ, Shin JH, Kim BJ, et al. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol 2010; 54: 347-353. https://doi.org/10.1111/j.1348-0421.2010.00221.x.
Leao SC, Tortoli E, Viana-Niero C, Ueki SY, Lima KV, Lopes ML, et al. Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of the Mycobacterium chelonae-M. abscessus group is needed. J Clin Microbiol 2009; 47: 2691–2698. https://doi.org/10.1128/JCM.00808-09.
Mougari F, Bouziane F, Crockett F, Nessar R, Chau F, Veziris N, et al. Selection of resistance to clarithromycin in Mycobacterium abscessus subspecies. Antimicrob Agents Chemother 2017; 61: e00943–16. https://doi.org/10.1128/AAC.00943-16.