Authors:
Sukrit Kashyap Department of Biotechnology, Delhi Technological University, New Delhi, India

Search for other papers by Sukrit Kashyap in
Current site
Google Scholar
PubMed
Close
and
Asmita Das Department of Biotechnology, Delhi Technological University, New Delhi, India

Search for other papers by Asmita Das in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9846-1005
Restricted access

Abstract

Recent scientific research has indicated that the gut microbiota constitutes a nuanced, diverse ecosystem of microorganisms that have gained significant attention due to its crucial involvement in shaping human health and diseases. In particular, the gut microbiota plays a pivotal role in cancer prevention, and disturbances in its composition and function, known as dysbiosis, that have been linked to an increased risk of developing various malignancies. The gut microbiota exerts a myriad of effects on the production of anti-cancer compounds, the host's immune system and inflammation, underscoring its crucial involvement in cancer. Additionally, recent studies have shown that the gut microbiota has a role in the development of cancer, influencing cancer risk, co-infections, disease progression, and treatment response. The observation of reduced efficacy of immunotherapy in patients receiving antibiotic treatment indicates a substantial influence of the microbiota in mediating the toxicity and response of cancer therapy, notably immunotherapy, and its immune-related side effects. A growing body of research has focused on cancer treatments that target the microbiome, including probiotics, dietary modifications, and faecal microbiota transplantation (FMT). The forthcoming era of personalised cancer therapies is anticipated to prioritise tumor evolution, molecular and phenotypic heterogeneity, and immunological profiling, with gut microbiota assuming a pivotal position in this domain. This review aims to offer clinicians a comprehensive perspective on the microbiota-cancer axis, including its influence on cancer prevention and therapy and highlights the importance of integrating microbiome science into the design and implementation of cancer therapies.

  • 1.

    Inaki K, Liu ET. Structural mutations in cancer: mechanistic and functional insights. Trends Genet 2012; 28(11): 550559.

  • 2.

    Samuel SR, Maiya AG, Fernandes DJ, Guddattu V, Saxena PUP, Kurian JR, et al. Effectiveness of exercise-based rehabilitation on functional capacity and quality of life in head and neck cancer patients receiving chemo-radiotherapy. Support Care Cancer 2019; 27(10): 39133920.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chen T, Zhao X, Ren Y, Wang Y, Tang X, Tian P, et al. Triptolide modulates tumour-colonisation and anti-tumour effect of attenuated Salmonella encoding DNase I. Appl Microbiol Biotechnol 2019; 103(2): 929939.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kumagai T, Rahman F, Smith AM. The microbiome and radiation induced-bowel injury: evidence for potential mechanistic role in disease pathogenesis. Nutrients 2018; 10(10): 1405.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Secombe KR, Coller JK, Gibson RJ, Wardill HR, Bowen JM. The bidirectional interaction of the gut microbiome and the innate immune system: implications for chemotherapy-induced gastrointestinal toxicity. Int J Cancer 2019; 144(10): 23652376.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 2017; 17(5): 271285.

  • 7.

    Gori S, Inno A, Belluomini L, Bocus P, Bisoffi Z, Russo A, et al. Gut microbiota and cancer: how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol 2019; 143: 139147.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    AlHilli, MM, Bae-Jump, V. Diet and gut microbiome interactions in gynecologic cancer. Gynecol Oncol 2020; 159(2): 299308.

  • 9.

    Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 2015; 26: 26050.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14(2): 195206.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14(2): 207215.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121141.

  • 13.

    Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011; 108(Suppl 1): 45864591.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008; 57(11): 16051615.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. Plos Biol 2007; 5(7): e177.

  • 16.

    O'Toole PW, Claesson MJ. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J 2010; 20: 281291.

  • 17.

    Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere MF. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 2013; 21(4): 167173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 2018; 6(1): 196.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017; 5(1): 48.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lim ES, Rodriguez C, Holtz LR. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 2018; 6(1): 87.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-Infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 2018; 24(1): 133145.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 2013; 185(5): 385394.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Borewicz K, Suarez-Diez M, Hechler C, Beijers R, de Weerth C, Arts I, et al. The effect of prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Sci Rep 2019; 9(1): 2434.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E, Rautava S. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front Nutr 2019; 6: 4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med 2015; 21(2): 109117.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489(7415): 220230.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med 2016; 8(1): 51.

  • 28.

    Yassour M, Vatanen T, Siljander H, Hämäläinen AM, Härkönen T, Ryhänen SJ, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 2016; 8(343): 343ra81.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McBurney MI, Davis C, Fraser CM, Schneeman BO, Huttenhower C, Verbeke K, et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J Nutr 2019; 149(11): 18821895.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol 2018; 15(4): 197205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Martínez I, Maldonado-Gomez MX, Gomes-Neto JC, Kittana H, Ding H, Schmaltz R, et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. eLife 2018; 7: e36521.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 2009; 77(6): 23672375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, et al. Moving pictures of the human microbiome. Genome Biol 2011; 12(5): R50.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018; 555(7695): 210215.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Fedacko J, Takahashi T, Singh RB, Pella D, Chibisov S, Hristova K, et al. Globalization of diets and risk of noncommunicable diseases, In: Watson R, Singh R, Takahashi T, editors The role of functional food security in global health, Associated Press, New York City 2019. pp. 87107.

    • Search Google Scholar
    • Export Citation
  • 36.

    Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 2019; 68(8): 14171429.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 2011; 93(5): 10621072.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 2017; 8: 1162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    He Y, Wu W, Zheng HM, Li P, McDonald D, Sheng HF, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 2018; 24(10): 15321535.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Miller GE, Engen PA, Gillevet PM, Shaikh M, Sikaroodi M, Forsyth CB, et al. Lower neighborhood socioeconomic status associated with reduced diversity of the colonic microbiota in healthy adults. PLoS One 2016; 11(2): e0148952.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell 2014; 159(4): 789799.

  • 42.

    Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nat Rev Genet 2017; 18(11): 690699.

  • 43.

    Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 2015; 16(1): 191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Rausch P, Rehman A, Künzel S, Häsler R, Ott SJ, Schreiber S, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci USA 2011; 108(47): 1903019035.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional keys for intestinal barrier modulation. Front Immunol 2015; 6: 612.

  • 46.

    Sommer F, Bäckhed F. The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium. Mucosal Immunol 2015; 8(2): 372379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Akbar N, Khan NA, Muhammad JS, Siddiqui R. The role of gut microbiome in cancer genesis and cancer prevention. Health Sci Rev 2022; 2: 100010.

    • Search Google Scholar
    • Export Citation
  • 48.

    Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis 2014; 35(2): 249255.

  • 49.

    Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013; 13(11): 800812.

  • 50.

    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 12621267.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Bultman SJ. The microbiome and its potential as a cancer preventive intervention. Semin Oncol 2016; 43(1): 97106.

  • 52.

    Johansson ME, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A, Rodríguez-Piñeiro AM, et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 2015; 18(5): 582592.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 2013; 14(7): 685690.

  • 54.

    Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 2013; 14(7): 685690.

  • 55.

    Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, et al. Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 2019; 11(1): 38.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Lin C, Cai X, Zhang J, Wang W, Sheng Q, Hua H, et al. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion 2019; 100(1): 7278.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350(6264): 10791084.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 2007; 117(8): 21972204.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun 2016; 7: 12365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Jan G, Belzacq AS, Haouzi D, Rouault A, Métivier D, Kroemer G, et al. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 2002; 9(2): 179188.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Wei W, Sun W, Yu S, Yang Y, Ai L. Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk Lymphoma 2016; 57(10): 24012408.

  • 62.

    Sánchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordóñez R, Medina JA, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers (Basel) 2020; 12(6): 1406.

    • Search Google Scholar
    • Export Citation
  • 63.

    Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res 2017; 77(1): 2740.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Cremonesi E, Governa V, Garzon JFG, Mele V, Amicarella F, Muraro MG, et al. Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut 2018; 67(11): 19841994.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Qin Y, Roberts JD, Grimm SA, Lih FB, Deterding LJ, Li R, et al. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome Biol 2018; 19(1): 7.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Wu TR, Lin CS, Chang CJ, Lin TL, Martel J, Ko YF, et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 2019; 68(2): 248262.

    • Search Google Scholar
    • Export Citation
  • 67.

    Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016; 535(7610): 7584.

  • 68.

    Chiaro TR, Soto R, Stephens ZW, Kubinak JL, Petersen C, Gogokhia L, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med 2017; 9(380): eaaf9044.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Gallimore AM, Godkin A. Epithelial barriers, microbiota, and colorectal cancer. N Engl J Med 2013; 368(3): 282284.

  • 70.

    Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 491(7423): 254258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Chen J, Pitmon E, Wang K. Microbiome inflammation and colorectal cancer. Semin Immunol 2017; 32: 4353.

  • 72.

    Dai Z, Zhang J, Wu Q, Chen J, Liu J, Wang L, et al. The role of microbiota in the development of colorectal cancer. Int J Cancer 2019; 145(8): 20322041.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad Ser B Phys Biol Sci 2017; 93(4): 196219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, et al. Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 2019; 11(1): 38.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Yao Y, Dai W. Genomic instability and cancer. J Carcinog Mutagen 2014; 5 :1000165.

  • 76.

    Frisan T. Bacterial genotoxins: the long journey to the nucleus of mammalian cells. Biochim Biophys Acta 2016; 1858(3): 567575.

  • 77.

    Bergounioux J, Elisee R, Prunier AL, Donnadieu F, Sperandio B, Sansonetti P, et al. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. Cell Host Microbe 2012; 11(3): 240252.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci USA 2011; 108(22): 92389243.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 2007; 26(32): 46174626.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci 2007; 120(Pt 11): 19441952.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Ding SZ, Minohara Y, Fan XJ, Wang J, Reyes VE, Patel J, et al. Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 2007; 75(8): 40304039.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Wada Y, Takemura K, Tummala P, Uchida K, Kitagaki K, Furukawa A, et al. Helicobacter pylori induces somatic mutations in TP53 via overexpression of CHAC1 in infected gastric epithelial cells. FEBS Open Bio 2018; 8(4): 671679.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 2011; 108(37): 1535415359.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Chaturvedi R, Asim M, Romero-Gallo J, Barry DP, Hoge S, de Sablet T, et al. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology 2011; 141(5): 1696–708.e1-2.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Huycke MM, Moore D, Joyce W, Wise P, Shepard L, Kotake Y, et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42(3): 729740.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Wong SH, Kwong TNY, Wu CY, Yu J. Clinical applications of gut microbiota in cancer biology. Semin Cancer Biol 2019; 55: 2836.

  • 87.

    Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, et al. Toll-like receptors in tumor immunotherapy. Clin Cancer Res 2007; 13: 52805289.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342(6161): 967970.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342(6161): 971976.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359(6371): 9197.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol 2018; 29(6): 14371444.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Ma W, Mao Q, Xia W, Dong G, Yu C, Jiang F. Gut microbiota shapes the efficiency of cancer therapy. Front Microbiol 2019; 10: 1050.

  • 93.

    Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res 2017; 120(7): 11831196.

  • 94.

    Li F, Wang M, Wang J, Li R, Zhang Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol 2019; 9: 206.

    • Search Google Scholar
    • Export Citation
  • 95.

    Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer's disease. J Neuroinflammation 2019; 16(1): 108.

  • 96.

    Brusaferro A, Cozzali R, Orabona C, Biscarini A, Farinelli E, Cavalli E, et al. Is it time to use probiotics to prevent or treat obesity? Nutrients 2018; 10(11): 1613.

    • Search Google Scholar
    • Export Citation
  • 97.

    Gupta, A, Khanna S. Fecal microbiota transplantation. JAMA 2017; 318(1): 102.

  • 98.

    Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 2017; 28(6): 13681379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016; 7 :10391.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Wang F, Yin Q, Chen L, Davis MM. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc Natl Acad Sci USA 2018; 115(1): 157161.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 2010; 107(27): 1220412209.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med 2014; 6(220): 220ra11.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958; 44(5): 854859.

  • 104.

    Chin SM, Sauk J, Mahabamunuge J, Kaplan JL, Hohmann EL, Khalili H. Fecal microbiota transplantation for recurrent Clostridium difficile infection in patients with inflammatory bowel disease: a single-center experience. Clin Gastroenterol Hepatol 2017; 15(4): 597599.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 2011; 9(12): 10441049.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc 2013; 78(2): 240249.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Gerding DN. Metronidazole for Clostridium difficile-associated disease: is it okay for Mom? Clin Infect Dis 2005; 40(11): 15981600.

  • 108.

    Wenisch C, Parschalk B, Hasenhündl M, Hirschl AM, Graninger W. Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of Clostridium difficile-associated diarrhea. Clin Infect Dis 1996; 22(5): 813818.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Sadowsky MJ, Khoruts A. Faecal microbiota transplantation is promising but not a panacea. Nat Microbiol 2016; 1: 16015.

  • 110.

    Choi HH, Cho YS. Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clin Endosc 2016; 49(3): 257265.

  • 111.

    Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol 2014; 48(8): 693702.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M, Alani M, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med 2016; 165(9): 609616.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368(5): 407415.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Youngster I, Sauk J, Pindar C, Wilson RG, Kaplan JL, Smith MB, et al. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis 2014; 58(11): 15151522.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 2013; 108(4): 478499.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Trubiano JA, Cheng AC, Korman TM, Roder C, Campbell A, May ML, et al. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J 2016; 46(4): 479493.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the infectious diseases society of America (IDSA) and society for healthcare epidemiology of America (SHEA). Clin Infect Dis 2018; 66(7): 987994.

    • Search Google Scholar
    • Export Citation
  • 118.

    Quraishi MN, Widlak M, Bhala N, Moore D, Price M, Sharma N, et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther 2017; 46(5): 479493.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Moayyedi P, Yuan Y, Baharith H, Ford AC. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med J Aust 2017; 207(4): 166172.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Fischer M, Sipe B, Cheng YW, Phelps E, Rogers N, Sagi S, et al. Fecal microbiota transplant in severe and severe-complicated Clostridium difficile: a promising treatment approach. Gut microbes 2017; 8(3): 289302.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 2015; 149(1): 223237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Goldin BR, Gorbach SL. Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats. J Natl Cancer Inst 1980; 64(2): 263265.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Górska A, Przystupski D, Niemczura MJ, Kulbacka J. Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol 2019; 76(8), 939949.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Goldin B, Gorbach SL. Alterations in fecal microflora enzymes related to diet, age, lactobacillus supplements, and dimethylhydrazine. Cancer 1977; 40(5 Suppl): 24212426.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Kim DH, Jin YH. Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch Pharm Res 2001; 24(6): 564567.

  • 126.

    Goldin BR, Swenson L, Dwyer J, Sexton M, Gorbach SL. Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. J Natl Cancer Inst 1980; 64(2): 255261.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Goldin BR, Gorbach SL. The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer. J Natl Cancer Inst 1976; 57(2): 371375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Goldin BR, Gorbach SL. Alterations of the intestinal microflora by diet, oral antibiotics, and Lactobacillus: decreased production of free amines from aromatic nitro compounds, azo dyes, and glucuronides. J Natl Cancer Inst 1984; 73(3): 689695.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Kulkarni N, Reddy BS. Inhibitory effect of Bifidobacterium longum cultures on the azoxymethane-induced aberrant crypt foci formation and fecal bacterial beta-glucuronidase. Proc Soc Exp Biol Med 1994; 207(3): 278283.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Rowland IR, Rumney CJ, Coutts JT, Lievense LC. Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 1998; 19(2): 281285.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N, Reddy BS. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 1997; 18(4): 833841.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Hirayama K, Rafter J. The role of probiotic bacteria in cancer prevention. Microbes Infect 2000; 2(6): 681686.

  • 133.

    Lidbeck A, Övervik E, Rafter J, Nord CE, Gustafsson JA. Effect of Lactobacillus acidophilus supplements on mutagen excretion in faeces and urine in humans. Microb Ecol Health Dis 1992; 5: 5967.

    • Search Google Scholar
    • Export Citation
  • 134.

    Hayatsu H, Hayatsu T. Suppressing effect of Lactobacillus casei administration on the urinary mutagenicity arising from ingestion of fried ground beef in the human. Cancer Lett 1993; 73(2–3): 173179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Le Leu RK, Hu Y, Brown IL, Woodman RJ, Young GP. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis 2010; 31(2): 246251.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Yeung CY, Chan WT, Jiang CB, Cheng ML, Liu CY, Chang SW, et al. Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model. PLoS One 2015; 10(9): e0138746.

    • Search Google Scholar
    • Export Citation
  • 137.

    Chang CW, Liu CY, Lee HC, Huang YH, Li LH, Chiau JC, et al. Lactobacillus casei variety rhamnosus probiotic preventively attenuates 5-fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model. Front Microbiol 2018; 9: 983.

    • Search Google Scholar
    • Export Citation
  • 138.

    Southcott E, Tooley KL, Howarth GS, Davidson GP, Butler RN. Yoghurts containing probiotics reduce disruption of the small intestinal barrier in methotrexate-treated rats. Dig Dis Sci 2008; 53(7): 18371841.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Mego M, Chovanec J, Vochyanova-Andrezalova I, Konkolovsky P, Mikulova M, Reckova M, et al. Prevention of irinotecan induced diarrhea by probiotics: a randomized double blind, placebo controlled pilot study. Complement Ther Med 2015; 23(3): 356362.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Demers M, Dagnault A, Desjardins J. A randomized double-blind controlled trial: impact of probiotics on diarrhea in patients treated with pelvic radiation. Clin Nutr 2014; 33(5): 761767.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Liu Z, Qin H, Yang Z, Xia Y, Liu W, Yang J, et al. Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery - a double-blind study. Aliment Pharmacol Ther 2011; 33(1): 5063.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Liu ZH, Huang MJ, Zhang XW, Wang L, Huang NQ, Peng H, et al. The effects of perioperative probiotic treatment on serum zonulin concentration and subsequent postoperative infectious complications after colorectal cancer surgery: a double-center and double-blind randomized clinical trial. Am J Clin Nutr 2013; 97(1): 117126.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Yang Y, Xia Y, Chen H, Hong L, Feng J, Yang J, et al. The effect of perioperative probiotics treatment for colorectal cancer: short-term outcomes of a randomized controlled trial. Oncotarget 2016; 7(7): 84328440.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Zaharuddin L, Mokhtar NM, Muhammad Nawawi KN, Raja Ali RA. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol 2019; 19(1): 131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Osterlund P, Ruotsalainen T, Korpela R, Saxelin M, Ollus A, Valta P, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 2007; 97(8): 10281034.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Wong MK, Barbulescu P, Coburn B, Reguera-Nuñez E. Therapeutic interventions and mechanisms associated with gut microbiota-mediated modulation of immune checkpoint inhibitor responses. Microbes Infect 2021; 23(6–7): 104804.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Villemin C, Six A, Neville BA, Lawley TD, Robinson MJ, Bakdash G. The heightened importance of the microbiome in cancer immunotherapy. Trends Immunol 2023; 44(1): 4459.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Hashmi A. Exploring the role of gut microbiome in cancer therapy. Targeted Therapies Oncol 2022; 11: 74.

  • 149.

    Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut 2020; 69(10): 18671876.

  • 150.

    Bessell CA, Isser A, Havel JJ, Lee S, Bell DR, Hickey JW, et al. Commensal bacteria stimulate antitumor responses via T cell cross-reactivity. JCI insight 2020; 5(8): e135597.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Fluckiger A, Daillère R, Sassi M, Sixt BS, Liu P, Loos F, et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 2020; 369(6506): 936942.

    • Search Google Scholar
    • Export Citation
  • 152.

    Hayase E, Jenq RR. Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Med 2021; 13(1): 107.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Petrosino JF. The microbiome in precision medicine: the way forward. Genome Med 2018; 10(1): 12.

  • 154.

    Zmora N, Zeevi D, Korem T, Segal E, Elinav E. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe 2016; 19(1): 1220.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Willing B, Halfvarson J, Dicksved J, Rosenquist M, Järnerot G, Engstrand L, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis 2009; 15(5): 653660.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 2010; 139(6): 1844–1854.e1.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015; 517(7533): 205208.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. Plos Comput Biol 2016; 12(7): e1004977.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 2017; 8: 1765.

  • 160.

    Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S, et al. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio 2015; 6(2): e00300-15.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350(6264): 10841089.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2024  
Web of Science  
Journal Impact Factor 1.6
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.37
Rank by Journal Citation Indicator Q4 (Immunology)
Scopus  
CiteScore 2.8
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.45
Scimago  
SJR index 0.41
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2025 172 1 1
Feb 2025 224 0 0
Mar 2025 163 0 0
Apr 2025 111 0 0
May 2025 81 1 0
Jun 2025 82 0 0
Jul 2025 0 0 0