Authors:
Samar Mhimdi Laboratory of Microbiology of Bechir Hamza Children's Hospital, Tunis, Tunisia
Faculty of Medicine of Tunis, Tunis El-Manar University, LR18ES39, Tunis, Tunisia

Search for other papers by Samar Mhimdi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1483-8803
,
Khaoula Meftah Laboratory of Microbiology of Bechir Hamza Children's Hospital, Tunis, Tunisia
Faculty of Medicine of Tunis, Tunis El-Manar University, LR18ES39, Tunis, Tunisia

Search for other papers by Khaoula Meftah in
Current site
Google Scholar
PubMed
Close
,
Aida Bouafsoun Laboratory of Microbiology of Bechir Hamza Children's Hospital, Tunis, Tunisia

Search for other papers by Aida Bouafsoun in
Current site
Google Scholar
PubMed
Close
, and
Hanen Smaoui Laboratory of Microbiology of Bechir Hamza Children's Hospital, Tunis, Tunisia
Faculty of Medicine of Tunis, Tunis El-Manar University, LR18ES39, Tunis, Tunisia

Search for other papers by Hanen Smaoui in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate identification of Mitis group streptococci especially Streptococcus pneumoniae and Streptococcus pseudopneumoniae seems difficult due to the lack of specific and sensitive tests. We performed an approach for the identification of atypical pneumococci in pediatric Tunisian population. In this study, 49 streptococcal isolates that were considered as atypical S. pneumoniae were analyzed by: optochin susceptibility in ambient and 5% CO2 atmosphere, oxgall disk sensitivity, PCR targeting several genes and antimicrobial susceptibility.

The combined results of biochemical and molecular methods showed the presence of 23 S. pneumoniae, 7 S. pseudopneumoniae, and 19 other mitis group. Among S. pseudopneumoniae, all isolates were collected from respiratory tract samples and showed a high level of resistance to β-lactams with a MIC90 of 32 mg L−1. Two isolates of S. pseudopneumoniae showed the typical phenotype of optochin resistance described in the literature. All isolates could be identified only by molecular tests. Among Streptococcus pneumonaie, all strains harbored the lytA gene and the Spn9802 fragment. But only 14 strains were encapsulated.

This study describes several assays for the identification of atypical pneumococci in order to gain insights on the nature of isolate and raise alert about the presence of these strains in the pediatric Tunisian community.

  • 1.

    Sistek V, Boissinot M, Boudreau DK, Huletsky A, Picard FJ, Bergeron MG. Development of a real-time PCR assay for the specific detection and identification of Streptococcus pseudopneumoniae using the recA gene. Clin Microbiol Infect 2012; 18(11): 108996. https://linkinghub.elsevier.com/retrieve/pii/S1198-743X(14)60744-8.

    • Search Google Scholar
    • Export Citation
  • 2.

    O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 2009; 374(9693): 893902. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(09)61204-6/fulltext.

    • Search Google Scholar
    • Export Citation
  • 3.

    Ramdani-Bouguessa N, Ziane H, Bekhoucha S, Guechi Z, Azzam A, Touati D, et al. Evolution of antimicrobial resistance and serotype distribution of Streptococcus pneumoniae isolated from children with invasive and noninvasive pneumococcal diseases in Algeria from 2005 to 2012. New Microbes New Infect 2015; 6: 428. https://pubmed.ncbi.nlm.nih.gov/26106481/.

    • Search Google Scholar
    • Export Citation
  • 4.

    Ramirez M. Streptococcus pneumoniae. In: Tang YW, Sussman M, Liu D, Poxton I, Schwartzman J. editors. Molecular medical microbiology. 2nd ed. Boston: Academic Press; 2015, pp. 152946. https://www.sciencedirect.com/science/article/pii/B978012397169200086X.

    • Search Google Scholar
    • Export Citation
  • 5.

    Doern CD, Burnham CAD. It’s not easy being green: the viridans group streptococci, with a focus on pediatric clinical manifestations. J Clin Microbiol 2010; 48(11): 382935. https://journals.asm.org/doi/10.1128/jcm.01563-10.

    • Search Google Scholar
    • Export Citation
  • 6.

    Cogné N, Claverys J, Denis F, Martin C. A novel mutation in the alpha-helix 1 of the C subunit of the F(1)/F(0) ATPase responsible for optochin resistance of a Streptococcus pneumoniae clinical isolate. Diagn Microbiol Infect Dis 2000; 38(2): 11921. https://pubmed.ncbi.nlm.nih.gov/11035244/.

    • Search Google Scholar
    • Export Citation
  • 7.

    Raddaoui A, Ben Tanfous F, Achour W, Baaboura R, Ben Hassen A. Description of a novelmutation in the atpC gene in optochin-resistant Streptococcus pneumoniae strains isolates from Tunisia. Int J Antimicrob Agents 2018; 51(5): 8035. https://pubmed.ncbi.nlm.nih.gov/29305958/.

    • Search Google Scholar
    • Export Citation
  • 8.

    Arbique JC, Poyart C, Trieu-Cuot P, Quesne G, Carvalho Mda G, Steigerwalt AG, et al. Accuracy of phenotypic and genotypic testing for identification of Streptococcus pneumoniae and description of Streptococcus pseudopneumoniae sp. nov. J Clin Microbiol 2004; 42(10): 468696. https://pubmed.ncbi.nlm.nih.gov/15472328/.

    • Search Google Scholar
    • Export Citation
  • 9.

    Mohammadi JS, Dhanashree B. Streptococcus pseudopneumoniae: an emerging respiratory tract pathogen. Indian J Med Res 2012; 136(5): 87780. https://pubmed.ncbi.nlm.nih.gov/23287138/.

    • Search Google Scholar
    • Export Citation
  • 10.

    Harf-Monteil C, Granello C, Le Brun C, Monteil H, Riegel P. Incidence and pathogenic effect of Streptococcus pseudopneumoniae. J Clin Microbiol 2006; 44(6): 22401. https://pubmed.ncbi.nlm.nih.gov/16757628/.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ikryannikova LN, Lapin KN, Malakhova MV, Filimonova AV, Ilina EN, Dubovickaya VA, et al. Misidentification of alpha-hemolytic streptococci by routine tests in clinical practice. Infect Genet Evol 2011; 11(7): 170915. https://pubmed.ncbi.nlm.nih.gov/21798371/.

    • Search Google Scholar
    • Export Citation
  • 12.

    Rolo D, S Simões A, Domenech A, Fenoll A, Liñares J, de Lencastre H, et al. Disease isolates of Streptococcus pseudopneumoniae and non-typeable S. pneumoniae presumptively identified as atypical S. pneumoniae in Spain. PLoS One 2013; 8(2): e57047. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057047.

    • Search Google Scholar
    • Export Citation
  • 13.

    Carvalho Mda G, Tondella ML, McCaustland K, Weidlich L, McGee L, Mayer LW, et al. Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. J Clin Microbiol 2007; 45(8): 24606. https://journals.asm.org/doi/10.1128/jcm.02498-06.

    • Search Google Scholar
    • Export Citation
  • 14.

    Wessels E, Schelfaut JJG, Bernards AT, Claas ECJ. Evaluation of several biochemical and molecular techniques for identification of Streptococcus pneumoniae and Streptococcus pseudopneumoniae and their detection in respiratory samples. J Clin Microbiol 2012; 50(4): 11717. https://journals.asm.org/doi/10.1128/jcm.06609-11.

    • Search Google Scholar
    • Export Citation
  • 15.

    Trzciński K, Bogaert D, Wyllie A, Chu ML, van der Ende A, Bruin JP, et al. Superiority of trans-oral over trans-nasal sampling in detecting Streptococcus pneumoniae colonizationin adults. PLoS One 2013; 8(3): e60520. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060520.

    • Search Google Scholar
    • Export Citation
  • 16.

    Park HK, Lee SJ, Yoon JW, Shin JW, Shin HS, Kook JK, et al. Identification of the cpsA gene as a specific marker for the discrimination of Streptococcus pneumoniae from viridans group streptococci. J Med Microbiol 2010; 59(Pt10): 114652. https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.017798-0.

    • Search Google Scholar
    • Export Citation
  • 17.

    World Health Organization & Centers for Disease Control and Prevention (U.S.). Laboratory methods for the diagnosis of meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. WHO manual 2nd edition: World Health Organization; 2011; Report No.: WHO/IVB/11.09. https://apps.who.int/iris/handle/10665/70765.

    • Search Google Scholar
    • Export Citation
  • 18.

    Pai R, Gertz RE, Beall B. Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J Clin Microbiol 2006; 44(1): 12431. https://journals.asm.org/doi/10.1128/jcm.44.1.124-131.2006.

    • Search Google Scholar
    • Export Citation
  • 19.

    Souza ARV, de Pina SECM, Costa NS, Neves FPG, Merquior VLC, Peralta JM, et al. Description of optochin-resistant Streptococcus pneumoniae due to an uncommon mutation in the atpA gene and comparison with previously identified atpC mutants from Brazil. Sci Rep 2021; 11(1): 7936. https://www.nature.com/articles/s41598-021-87071-8.

    • Search Google Scholar
    • Export Citation
  • 20.

    Wen SCH, Anderson T, Murdoch D. Streptococcus pseudopneumoniae. Clin Microbiol Newsl 2014; 36(9): 6571. https://www.sciencedirect.com/science/article/abs/pii/S0196439914000270.

    • Search Google Scholar
    • Export Citation
  • 21.

    Laurens C, Michon AL, Marchandin H, Bayette J, Didelot MN, Jean-Pierre H. Clinical and antimicrobial susceptibility data of 140 Streptococcus pseudopneumoniae isolates in France. Antimicrob Agents Chemother 2012; 56(8): 45047. https://journals.asm.org/doi/10.1128/aac.06374-11.

    • Search Google Scholar
    • Export Citation
  • 22.

    Dupont C, Michon AL, Normandin M, Salom G, Latypov M, Chiron R, et al. Streptococcus pseudopneumoniae, an opportunistic pathogen in patients with cystic fibrosis. J Cyst Fibros 2020; 19(4): e2831. https://www.sciencedirect.com/science/article/pii/S156919931930966X.

    • Search Google Scholar
    • Export Citation
  • 23.

    Garriss G, Nannapaneni P, Simões AS, Browall S, Subramanian K, Sá-Leão R, et al. Genomic characterization of the emerging pathogen Streptococcus pseudopneumoniae. mBio 2019; 10(3): e0128619 https://journals.asm.org/doi/10.1128/mBio.01286-19.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ercibengoa M, Morales M, Alonso M, Ardanuy C, Marimón JM. Variants of the bile: solubility test to differentiate Streptococcus pneumoniae from other viridans group streptococci. Future Microbiol 2019; 14: 94955. https://www.futuremedicine.com/doi/10.2217/fmb-2019-0073.

    • Search Google Scholar
    • Export Citation
  • 25.

    El-Kazzaz SS, El-Khier NTA, Arram EO. Streptococcus pseudopneumoniae as an emerging pathogen from patients with respiratory diseases.Afr J Microbiol Res 2017; 11(34): 133845. https://academicjournals.org/journal/AJMR/articleabstract/ECB197066073.

    • Search Google Scholar
    • Export Citation
  • 26.

    Tavares DA, Handem S, Carvalho RJ, Paulo AC, de Lencastre H, Hinds J, et al. Identification of Streptococcus pneumoniae by a real-time PCR assay targeting SP2020. Sci Rep 2019; 9(1): 111. https://www.nature.com/articles/s41598-019-39791-1.

    • Search Google Scholar
    • Export Citation
  • 27.

    Charfi F, Smaoui H, Kechrid A. Non-susceptibility trends and serotype coverage by conjugate pneumococcal vaccines in a Tunisian paediatric population: a 10-year study. Vaccine 2012; 30(Suppl 6): G1824. https://linkinghub.elsevier.com/retrieve/pii/S0264410X12010195.

    • Search Google Scholar
    • Export Citation
  • 28.

    Zhou M, Yang Q, Kudinha T, Zhang L, Xiao M, Kong F, et al. Using matrix-assisted laser desorption ionization-time of flight (mALDI-tOF) complemented with selected 16S rRNA and gyrB genes sequencing to practically identify clinical important viridans group streptococci (VGS). Front Microbiol 2016; 7: 1328. https://www.frontiersin.org/articles/10.3389/fmicb.2016.01328/full.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2022  
Web of Science  
Total Cites
WoS
689
Journal Impact Factor 1.5
Rank by Impact Factor

Immunology (Q4)
Microbiology (Q4)

Impact Factor
without
Journal Self Cites
1.3
5 Year
Impact Factor
1.7
Journal Citation Indicator 0.34
Rank by Journal Citation Indicator

Immunology (Q4)
Microbiology (Q4)

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0.333
Scimago Quartile Score

Immunology and Microbiology (miscellaneous) (Q3)
Infectious Diseases (Q3)
Medicine (miscellaneous) (Q3)
Microbiology (medical) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
General Immunology and Microbiology 29/53 (46th PCTL)
Infectious Diseases 186/304 (38th PCTL)
Microbiology 85/124 (31st PCTL)
Scopus
SNIP
0.484

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2023 0 0 0
Oct 2023 0 0 0
Nov 2023 0 0 0
Dec 2023 626 13 10
Jan 2024 252 2 4
Feb 2024 204 4 10
Mar 2024 0 0 0