Authors:
Mehdi Goudarzi Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Mehdi Goudarzi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6720-9341
,
Mehrdad Haghighi Department of Infectious Diseases, Imam Hossein Teaching and Medical Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Mehrdad Haghighi in
Current site
Google Scholar
PubMed
Close
,
Yousef Mirzaei Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq

Search for other papers by Yousef Mirzaei in
Current site
Google Scholar
PubMed
Close
,
Behzad Pourhossein Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Behzad Pourhossein in
Current site
Google Scholar
PubMed
Close
,
Masoud Dadashi Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

Search for other papers by Masoud Dadashi in
Current site
Google Scholar
PubMed
Close
, and
Mohammad Javad Nasiri Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Mohammad Javad Nasiri in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The prevalence of Streptococcus agalactiae infections in adult populations is increasing. The current study aimed to characterize the genetic features of S. agalactiae strains responsible for different infections. A cross-sectional study was performed on 65 S. agalactiae strains (30 invasive and 35 noninvasive) isolated from non-pregnant women. All S. agalactiae isolates were confirmed by atr and dltS PCR assays. Antibiotic susceptibility patterns were determined using the disk diffusion method. Biofilm production was investigated by microtiter plate assay. PCR was done to detect resistance determinants. Isolates were characterized using the multilocus sequence typing (MLST) method. cMLSB, iMLSB, and M phenotypes accounted for 47.7%, 30.8%, and 6.2%, respectively. MDR was detected in 15.4% of noninvasive and 44.6% of invasive isolates. MtP assay indicated that 80% of isolates were biofilm producers. Biofilm formation was common among noninvasive compared with invasive strains (94.3% versus 66.7%). tet (M) (46.2%) and erm (B) (69.2%) were the most prevalent tetracycline and macrolide-resistance genes. The most prevalent serotype was type III (50.8%), followed by Ia (18.4%), II (15.4%), V (12.3%), and IV (3.1%). The frequency of serotype III among biofilm producer strains (81.8%) was found to be significantly higher than that of non-producer isolates (18.2%) (P < 0.05). S. agalactiae was resolved within four clonal complexes, including CC19 (46.2%; in both invasive and noninvasive), followed by CC23 (30.8%; only noninvasive isolates), CC1 (15.4%; only noninvasive isolates) and CC17 (7.6%; only invasive isolates). The main sequence types (STs) found were ST19 (27.7%), ST17 (7.7%), ST27 (6.2%), and ST28 (4.6%) linked with invasive infections and ST23 (18.4%), ST933 (12.3%), ST644 (9.2%), ST19 (7.7%), ST1 (6.2%) found in noninvasive infections. The high prevalence of CC19 and CC23 clones among S. agalactiae strains reflects the emergence of these lineages as successful clones in Iran.

  • 1.

    Shabayek S, Spellerberg B. Group B streptococcal colonization, molecular characteristics, and epidemiology. Front Microbiol 2018; 9: 437. https://doi.org/10.3389/fmicb.2018.00437.

    • Search Google Scholar
    • Export Citation
  • 2.

    Bianchi-Jassir F, Paul P, To KN, Carreras-Abad C, Seale AC, Jauneikaite E, et al. A systematic review of Group B Streptococcal capsular types, sequence types, and surface proteins as potential vaccine candidates. Vaccine 2020; 38: 66826694. https://doi.org/10.1016/j.vaccine.2020.08.052.

    • Search Google Scholar
    • Export Citation
  • 3.

    Raabe VN, Shane AL. Group B streptococcus (Streptococcus agalactiae). Microbiol Spectr 2019; 7: 7.2. 17. https://doi.org/10.1128/microbiolspec.GPP3-0007-2018.

    • Search Google Scholar
    • Export Citation
  • 4.

    Gherardi G, Imperi M, Baldassarri L, Pataracchia M, Alfarone G, Recchia S, et al. Molecular epidemiology and distribution of serotypes, surface proteins, and antibiotic resistance among group B streptococci in Italy. J Clin Microbiol 2007; 45: 29092916. https://doi.org/10.1128/JCM.00999-07.

    • Search Google Scholar
    • Export Citation
  • 5.

    Brzychczy-Wloch M, Gosiewski T, Bulanda M. Multilocus sequence types of invasive and colonizing neonatal group B streptococci in Poland. Med Princ Pract 2014; 23: 323-330. https://doi.org/10.1159/000362368.

    • Search Google Scholar
    • Export Citation
  • 6.

    Cheng Z, Qu P, Ke P, Yang X, Zhou Q, Lan K, et al. Antibiotic resistance and molecular epidemiological characteristics of Streptococcus agalactiae isolated from pregnant women in Guangzhou, South China. Can J Infect Dis Med Microbiol 2020; 2020. https://doi.org/10.1155/2020/1368942.

    • Search Google Scholar
    • Export Citation
  • 7.

    Ezhumalai M, Muthanna A, Suhaili Z, Dzaraly ND, Amin-Nordin S, Amal MN, et al. Multilocus sequence typing analysis of invasive and non-invasive Group B Streptococcus of hospital origin in Malaysia. Malays J Med Sci 2020; 27: 134. https://doi.org/10.21315/mjms2020.27.1.14.

    • Search Google Scholar
    • Export Citation
  • 8.

    Arabestani MR, Mousavi SM, Nasaj M. Genotyping of clinical Streptococcus agalactiae strains based on molecular serotype of capsular (cps) gene cluster sequences using polymerase chain reaction. Arch Clin Infect Dis 2017; 12. https://doi.org/10.5812/archcid.36787.

    • Search Google Scholar
    • Export Citation
  • 9.

    Goudarzi M, Mohammadi A, Amirpour A, Fazeli M, Nasiri MJ, Hashemi A, et al. Genetic diversity and biofilm formation analysis of Staphylococcus aureus causing urinary tract infections in Tehran, Iran. J Infect Dev Ctries 2019; 13: 777785. https://doi.org/10.3855/jidc.11329.

    • Search Google Scholar
    • Export Citation
  • 10.

    Yousefi M, Pourmand MR, Fallah F, Hashemi A, Mashhadi R, Nazari-Alam A. Characterization of Staphylococcus aureus biofilm formation in urinary tract infection. Iran J Public Health 2016; 45485.

    • Search Google Scholar
    • Export Citation
  • 11.

    Navidinia M, Mohammadi A, Arjmand R, Dadashi M, Goudarzi M. Molecular typing, biofilm formation, and analysis of adhesion factors in Staphylococcus aureus strains isolated from urinary tract infections. Gene Rep 2021; 22: 101008. https://doi.org/10.1016/j.genrep.2020.101008.

    • Search Google Scholar
    • Export Citation
  • 12.

    Palmeiro JK, Dalla-Costa LM, Fracalanzza SE, Botelho AC, da Silva Nogueira K, Scheffer MC, et al. Phenotypic and genotypic characterization of group B streptococcal isolates in southern Brazil. J Clin Microbiol 2010; 48: 43974403. https://doi.org/10.1128/JCM.00419-10.

    • Search Google Scholar
    • Export Citation
  • 13.

    Maeda T, Tsuyuki Y, Fujita T, Fukushima Y, Goto M, Yoshida H, et al. Comparison with Streptococcus agalactiae isolates from humans reveals genotypic and phenotypic characteristics of isolates from companion animal-origin. Jpn J Infect Dis 2020: JJID. 2019.441.

    • Search Google Scholar
    • Export Citation
  • 14.

    Kimura K, Suzuki S, Wachino JI, Kurokawa H, Yamane K, Shibata N, et al. First molecular characterization of group B streptococci with reduced penicillin susceptibility. Antimicrob Agents Chemother 2008; 52: 28902897. https://doi.org/10.1128/AAC.00185-08.

    • Search Google Scholar
    • Export Citation
  • 15.

    Aboutorabi SS, Rasooli Z, Pakniat H, Baloo F. Molecular characterization of prevalence, serotypes, virulence factors, and antibiotic resistance of Streptococcus agalactiae in a maternity hospital, Iran. Integr Cancer Sci Ther 2021; 8: 1000356. https://doi.org/10.15761/ICST.1000356.

    • Search Google Scholar
    • Export Citation
  • 16.

    Dahesh S, Hensler ME, Van Sorge NM, Gertz Jr RE, Schrag S, Nizet V, et al. A point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to β-lactam antibiotics. Antimicrob Agents Chemother 2008; 52: 29152918. https://doi.org/10.1128/AAC.00461-08.

    • Search Google Scholar
    • Export Citation
  • 17.

    Nakamura PA, Schuab RB, Neves FP, Pereira CF, de Paula GR, Barros RR. Antimicrobial resistance profiles and genetic characterization of macrolide-resistant isolates of Streptococcus agalactiae. Mem Inst Oswaldo Cruz 2011; 106: 119122. https://doi.org/10.1590/S0074-02762011000200001.

    • Search Google Scholar
    • Export Citation
  • 18.

    Gizachew M, Tiruneh M, Moges F, Adefris M, Tigabu Z, Tessema B. Molecular characterization of Streptococcus agalactiae isolated from pregnant women and newborns at the University of Gondar comprehensive specialized hospital, Northwest Ethiopia. BMC Infect Dis 2020; 20: 19. https://doi.org/10.1186/s12879-020-4776-7.

    • Search Google Scholar
    • Export Citation
  • 19.

    Piccinelli G, Biscaro V, Gargiulo F, Caruso A, De Francesco MA. Characterization and antibiotic susceptibility of Streptococcus agalactiae isolates causing urinary tract infections. Infect Genet Evol 2015; 34: 16. https://doi.org/10.1016/j.meegid.2015.07.001.

    • Search Google Scholar
    • Export Citation
  • 20.

    Emaneini M, Jabalameli F, Mirsalehian A, Ghasemi A, Beigverdi R. Characterization of virulence factors, antimicrobial resistance pattern and clonal complexes of group B streptococci isolated from neonates. Microb Pathog 2016; 99: 119122. https://doi.org/10.1016/j.micpath.2016.08.016.

    • Search Google Scholar
    • Export Citation
  • 21.

    Lu B, Chen X, Wang J, Wang D, Zeng J, Li Y, et al. Molecular characteristics and antimicrobial resistance in invasive and noninvasive Group B Streptococcus between 2008 and 2015 in China. Diagn Microbiol Infect Dis 2016; 86: 351357. https://doi.org/10.1016/j.diagmicrobio.2016.08.023.

    • Search Google Scholar
    • Export Citation
  • 22.

    Björnsdóttir ES, Martins ER, Erlendsdóttir H, Haraldsson G, Melo-Cristino J, Kristinsson KG, et al. Changing epidemiology of group B streptococcal infections among adults in Iceland: 1975–2014. Clin Microbiol Infect 2016; 22: 379. e9–e16. https://doi.org/10.1016/j.cmi.2015.11.020.

    • Search Google Scholar
    • Export Citation
  • 23.

    Moltó-García B, del Carmen Liébana-Martos M, Cuadros-Moronta E, Rodríguez-Granger J, Sampedro-Martínez A, Rosa-Fraile M, et al. Molecular characterization and antimicrobial susceptibility of hemolytic Streptococcus agalactiae from post-menopausal women. Maturitas 2016; 85: 510. https://doi.org/10.1016/j.maturitas.2015.11.007.

    • Search Google Scholar
    • Export Citation
  • 24.

    Zhang L, Ma L, Zhu L, Zhou XH, Xu LJ, Guo C, et al. Molecular characterization of pathogenic group B streptococcus from a tertiary hospital in Shanxi, China: high incidence of sequence type 10 strains in infants/pregnant women. J Microbiol Immunol Infect 2021; 54: 10941100. https://doi.org/10.1016/j.jmii.2020.07.018.

    • Search Google Scholar
    • Export Citation
  • 25.

    Kao Y, Tsai MH, Lai MY, Chu SM, Huang HR, Chiang MC, et al. Emerging serotype III sequence type 17 group B streptococcus invasive infection in infants: the clinical characteristics and impacts on outcomes. BMC Infect Dis 2019; 19: 18. https://doi.org/10.1186/s12879-019-4177-y.

    • Search Google Scholar
    • Export Citation
  • 26.

    Luan SL, Granlund M, Sellin M, Lagergård T, Spratt BG, Norgren M. Multilocus sequence typing of Swedish invasive group B streptococcus isolates indicates a neonatally associated genetic lineage and capsule switching. J Clin Microbiol 2005; 43: 37273733. https://doi.org/10.1128/JCM.43.8.3727-3733.2005.

    • Search Google Scholar
    • Export Citation
  • 27.

    Springman AC, Lacher DW, Waymire EA, Wengert SL, Singh P, Zadoks RN, et al. Pilus distribution among lineages of group b streptococcus: an evolutionary and clinical perspective. BMC Microbiol 2014; 14: 111. https://doi.org/10.1186/1471-2180-14-159.

    • Search Google Scholar
    • Export Citation
  • 28.

    Al Safadi R, Amor S, Hery-Arnaud G, Spellerberg B, Lanotte P, Mereghetti L, et al. Enhanced expression of lmb gene encoding laminin-binding protein in Streptococcus agalactiae strains harboring IS 1548 in the scpB-lmb intergenic region. PLoS One 2010; 5: e10794. https://doi.org/10.1371/journal.pone.0010794.

    • Search Google Scholar
    • Export Citation
  • 29.

    Bohnsack JF, Whiting A, Gottschalk M, Dunn DM, Weiss R, Azimi PH, et al. Population structure of invasive and colonizing strains of Streptococcus agalactiae from six US Academic Centers neonates from 1995 to 1999. J Clin Microbiol. 2008; 46(4): 12851291. https://doi.org/10.1128/JCM.02105-07.

    • Search Google Scholar
    • Export Citation
  • 30.

    Huber CA, McOdimba F, Pflueger V, Daubenberger CA, Revathi G. Characterization of invasive and colonizing isolates of Streptococcus agalactiae in East African adults. J Clin Microbiol 2011; 49: 36523655. https://doi.org/10.1128/JCM.01288-11.

    • Search Google Scholar
    • Export Citation
  • 31.

    Straková L, Musílek M, Motlová J. Multilocus sequence types in Czech neonatal GBS strains from 2004 to 2008. Epidemiol Mikrobiol Imunol 2010; 59: 4547.

    • Search Google Scholar
    • Export Citation
  • 32.

    Morozumi M, Wajima T, Kuwata Y, Chiba N, Sunaoshi K, Sugita K, et al. Associations between capsular serotype, multilocus sequence type, and macrolide resistance in Streptococcus agalactiae isolates from Japanese infants with invasive infections. Epidemiol Infect 2014; 142: 812819. https://doi.org/10.1017/S0950268813001647.

    • Search Google Scholar
    • Export Citation
  • 33.

    Jiang H, Chen M, Li T, Liu H, Gong Y, Li M. Molecular characterization of Streptococcus agalactiae causing community-and hospital-acquired infections in Shanghai, China. Front Microbiol 2016; 7: 1308. https://doi.org/10.3389/fmicb.2016.01308.

    • Search Google Scholar
    • Export Citation
  • 34.

    Flores AR, Galloway-Peña J, Sahasrabhojane P, Saldaña M, Yao H, Su X, et al. Sequence type 1 group B Streptococcus, an emerging cause of invasive adult disease, evolves by small genetic changes. Proc Natl Acad Sci 2015; 112: 64316436. https://doi.org/10.1073/pnas.1504725112.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 115 2 3
May 2024 62 0 0
Jun 2024 91 0 1
Jul 2024 147 1 2
Aug 2024 90 0 0
Sep 2024 93 1 1
Oct 2024 35 0 0