Authors:
Sevil Öztaş Vocational School of Health Services, Karabuk University, Karabük, 78600, Türkiye

Search for other papers by Sevil Öztaş in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4134-1587
,
Doğanhan Kadir Er Molecular Gastroenterology and Hepatology Department, Gastroenterology and Hepatology Institute, Kocaeli University, Kocaeli, 41000, Türkiye
Medical Microbiology Department Faculty of Medicine, Kocaeli University, Kocaeli, 41000, Türkiye

Search for other papers by Doğanhan Kadir Er in
Current site
Google Scholar
PubMed
Close
,
Devrim Dündar Medical Microbiology Department Faculty of Medicine, Kocaeli University, Kocaeli, 41000, Türkiye

Search for other papers by Devrim Dündar in
Current site
Google Scholar
PubMed
Close
, and
Sema Aşkın Keçeli Medical Microbiology Department Faculty of Medicine, Kocaeli University, Kocaeli, 41000, Türkiye

Search for other papers by Sema Aşkın Keçeli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Carbapenem-resistant Enterobacterales (CRE) have become a major public health problem worldwide. The aim of this study was to investigate efficacy of ceftazidime/avibactam and plazomicin on carbapenem-resistant Klebsiella pneumoniae and Escherichia coli isolates. Susceptibility of imipenem, meropenem, ertapenem, ceftazidime/avibactam and plazomicin was investigated by broth-microdilution method. Major carbapenemases NDM, VIM, IMP, KPC, OXA-48 as well as other β-lactamases namely, TEM, SHV, OXA-1-like, CTX-M, ACC, FOX, MOX, DHA, CIT, EBC, VEB, GES, PER were investigated by PCR. A total of 120 carbapenem-resistant isolates (60 E. coli and 60 K. pneumoniae) were included in this study and blaOXA-48-like was found in 78.33%, blaNDM in 26.66%, blaKPC in 7.5%, blaIMP in 5.83%, and blaVIM in 5%. Among 94 isolates with the blaOXA-48-like gene, 22.3% were resistant to ceftazidime/avibactam and 51.1% were resistant to plazomicin. Of 32 isolates with blaNDM, 31 (96.9%) were resistant to ceftazidime/avibactam and 30 (93.75%) were resistant to plazomicin, and both antibiotics had limited effects against blaNDM carriers (P < 0.001). Of the 12 isolates with blaNDM+OXA-48 combination, 11 (91.7%) were resistant to ceftazidime/avibactam and plazomicin. The effect of both antibiotics was significantly lower in strains with blaNDM+OXA-48 combination (P < 0.005).

The most common carbapenemase genes in this study were blaOXA-48-like and blaNDM. Ceftazidime/avibactam demonstrated a good efficacy among OXA-48 producing K. pneumoniae and E. coli, however, plazomicin had a significantly lower antibacterial effect in our study. Both antimicrobial agents should be considered as an option by evaluating combined susceptibility results and gene patterns obtained by regional and global molecular data in the treatment of CRE infections.

  • 1.

    World Health Organization antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance [Accessed 5 July 2023].

    • Search Google Scholar
    • Export Citation
  • 2.

    European Centre for Disease Prevention and Control (ECDC) Technical Report. Assessing the health burden of infections with antibiotic-resistant bacteria in the EU/EEA, 2016-2020. Eur Centre Dis Prev Control. https://www.ecdc.europa.eu/en/publications-data/health-burden-infections-antibiotic-resistant-bacteria-2016-2020 [Accessed 4 July 2023].

    • Search Google Scholar
    • Export Citation
  • 3.

    Tompkins K, Duin DV. Treatment for carbapenem resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis 2021; 40(10): 20532068. https://doi.org/10.1007/s10096-021-04296-1.

    • Search Google Scholar
    • Export Citation
  • 4.

    World Health Organization WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed [Accessed 3 July 2023].

    • Search Google Scholar
    • Export Citation
  • 5.

    Angelis DG, Giacomo DP, Posteraro B, Sanguinetti M, Tumbarello M. Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21: 5090. https://doi.org/10.3390/ijms21145090.

    • Search Google Scholar
    • Export Citation
  • 6.

    Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother 2018; 62: e0107618. https://doi.org/10.1128/AAC.01076-18.

    • Search Google Scholar
    • Export Citation
  • 7.

    Ambler RP. The structure of β-lactamases. Philos Trans R Soc B Biol Sci 1980; 289: 321331. https://doi.org/10.1098/rstb.1980.0049.

  • 8.

    Palzkill T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci 2018; 5: 16. https://doi.org/10.3389/fmolb.2018.00016.

    • Search Google Scholar
    • Export Citation
  • 9.

    Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, et al. Lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol 2019; 431: 34723500. https://doi.org/10.1016/j.jmb.2019.04.002.

    • Search Google Scholar
    • Export Citation
  • 10.

    Codjoe FS, Donkor ES. Carbapenem resistance: a review. Med Sci 2018; 6(1): 1. https://doi.org/10.3390/medsci6010001.

  • 11.

    Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin Infect Dis 2019; 69(7): 521528. https://doi.org/10.1093/cid/ciz824.

    • Search Google Scholar
    • Export Citation
  • 12.

    Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis 2016; 3(1): 1521. https://doi.org/10.1177/2049936115621709.

    • Search Google Scholar
    • Export Citation
  • 13.

    Wang Y, Wang J, Wang R, Cai Y. Resistance to ceftazidime-avibactam and underlying mechanisms. J Glob Antimicrob Resist 2020; 22: 1827. https://doi.org/10.1016/j.jgar.2019.12.009.

    • Search Google Scholar
    • Export Citation
  • 14.

    Wiens PL, Walkty A, Karlowsky JA. Ceftazidime-avibactam: an evidence-based review of its pharmacology and potential use in the treatment of gram-negative bacterial infections. Core Evid 2014; 9: 1325. https://doi.org/10.2147/CE.S40698.

    • Search Google Scholar
    • Export Citation
  • 15.

    Shirley M. Ceftazidime-avibactam: a review in the treatment of serious gram-negative bacterial infections. Drugs 2018; 78(6): 675692. https://doi.org/10.1007/s40265-018-0902-x.

    • Search Google Scholar
    • Export Citation
  • 16.

    Saravolatz LD, Stein GE. Plazomicin: a new aminoglycoside. Clin Infect Dis 2020; 70(4): 704709. https://doi.org/10.1093/cid/ciz640.

  • 17.

    Zhanel GG, Lawson CD, Zelenitsky S, Findlay B, Schweizer F, Adam H, et al. Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti Infect Ther 2012; 10(4): 495473. https://doi.org/10.1586/eri.12.25.

    • Search Google Scholar
    • Export Citation
  • 18.

    Walktya A, Karlowskya JA, Baxtera MR, Adama JH, Zhanel GG. In vitro activity of plazomicin against gram-negative and gram-positive bacterial pathogens isolated from patients in canadian hospitals from 2013 to 2017 as part of the CANWARD surveillance study. Antimicrob Agents Chemother 2019; 63(1): e0206818. https://doi.org/10.1128/AAC.02068-18.

    • Search Google Scholar
    • Export Citation
  • 19.

    Hansen GT. Continuous evolution: perspective on the epidemiology of carbapenemase resistance among enterobacterales and other gram-negative bacteria. Infect Dis Ther 2021; 10(1): 7592. https://doi.org/10.1007/s40121-020-00395-2.

    • Search Google Scholar
    • Export Citation
  • 20.

    European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST reading guide for broth dilution, Version 4.0; 2022. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2022_manuals/Reading_guide_BMD_v_4.0_2022.pdf [Accessed 1 May 2022].

    • Search Google Scholar
    • Export Citation
  • 21.

    European Society of Clinical Microbiology and Infectious Diseases. European committee on antimicrobial susceptibility testing breakpoint tables for interpretation of MICs and zone diameters, Version 12.0; 2022. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf [Accessed 30 May 2022].

    • Search Google Scholar
    • Export Citation
  • 22.

    Clinical And Laboratory Standards Institute. Performance Standards for antimicrobial susceptibility testing, 33rd Edition; 2023. http://em100.edaptivedocs.net/GetDoc.aspx?doc=CLSI%20M100%20ED33:2023&scope=user [Accessed 10 April 2023].

    • Search Google Scholar
    • Export Citation
  • 23.

    European Committee on Antimicrobial Susceptibility Testing (EUCAST). Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST, Version 12.0; 2022. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/QC/v_12.0_EUCAST_QC_tables_routine_and_extended_QC.pdf [Accessed 2 May 2022].

    • Search Google Scholar
    • Export Citation
  • 24.

    Moskowitz SM, Foster JM, Emerson J, Burns JL. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 2004; 42(5): 19151922. https://doi.org/10.1128/JCM.42.5.1915-1922.2004.

    • Search Google Scholar
    • Export Citation
  • 25.

    Dallenne C, Costa AD, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65(3): 490495. https://doi.org/10.1093/jac/dkp498.

    • Search Google Scholar
    • Export Citation
  • 26.

    Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JDD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol 2012; 50(12): 38773880. https://doi.org/10.1128/JCM.02117-12.

    • Search Google Scholar
    • Export Citation
  • 27.

    Mangoni DE, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin Microbiol Infect 2019; 25(8): 943950. https://doi.org/10.1016/j.cmi.2019.04.013.

    • Search Google Scholar
    • Export Citation
  • 28.

    Tilahun M, Kassa Y, Gedefie A, Ashagire M. Emerging carbapenem-resistant Enterobacteriaceae infection, its epidemiology and novel treatment options: a review. Infect Drug Resist 2021; 14: 43634374. https://doi.org/10.2147/IDR.S337611.

    • Search Google Scholar
    • Export Citation
  • 29.

    Oliveira J, Reygaert WC. Gram negative bacteria. In: StatPearls (Internet). StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK538213/ [Accessed 3 July 2023].

    • Search Google Scholar
    • Export Citation
  • 30.

    Wei Y, Xio L, Luo Q, Chen Y, Ji J, Ying C, et al. In vitro activity comparison of ceftazidime-avibactam and aztreonam-avibactam against bloodstream infections with carbapenem-resistant organisms in China. Front Cell Infect Microbiol 2021; 11: 780365. https://doi.org/10.3389/fcimb.2021.780365.

    • Search Google Scholar
    • Export Citation
  • 31.

    Nasomsong W, Nulsopapon P, Changpradub D, Pongchaidecha M, Pungcharoenkijkul S, Juntanawiwat P, et al. The potential use of ceftazidime-avibactam against carbapenem resistant Klebsiella pneumoniae clinical isolates harboring different carbapenemase types in a Thai University Hospital. Drug Des Devel Ther 2021; 15: 30953104. https://doi.org/10.2147/DDDT.S321147.

    • Search Google Scholar
    • Export Citation
  • 32.

    Genç S, Kolaylı F, Özçelik E. Molecular characterization of carbapenemase producing Klebsiella pneumoniae strains by multiplex PCR and PFGE methods: the first K. pneumoniae isolates co-producing OXA-48/KPC and KPC/NDM in Turkey. J Infect Chemother 2022; 28(2): 192198. https://doi.org/10.1016/j.jiac.2021.10.009.

    • Search Google Scholar
    • Export Citation
  • 33.

    Çakar A, Akyön Y, Gür D, Karatuna O, Öğünç D, Baysan , et al. Investigation of carbapenemases in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains isolated in 2014 in Turkey. Mikrobiyol Bul 2016; 50(1): 2133. https://doi.org/10.5578/mb.10695.

    • Search Google Scholar
    • Export Citation
  • 34.

    Ozger HS, Evren E, Yıldız SS, Erol C, Bayraktar F, Azap O, et al. Ceftazidime-avibactam susceptibility among carbapenem-resistant Enterobacteales in a pilot study in Turkey. Acta Microbiol Immunol Hung 2021; 68(4): 256261. https://doi.org/10.1556/030.2021.01525.

    • Search Google Scholar
    • Export Citation
  • 35.

    Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017; 7(2): 153163. https://doi.org/10.1016/S1473-3099(16)30257-2.

    • Search Google Scholar
    • Export Citation
  • 36.

    Duin VD, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulance 2017; 8(4): 460469. https://doi.org/10.1080/21505594.2016.1222343.

    • Search Google Scholar
    • Export Citation
  • 37.

    Tawfick MM, Alshareef WA, Bendary HA, Elmahalawy H, Abdulall K. The emergence of carbapenemase blaNDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. Eur J Clin Microbiol Infect Dis 2020; 39(7): 12511259. https://doi.org/10.1007/s10096-020-03839-2.

    • Search Google Scholar
    • Export Citation
  • 38.

    Alraddadi BM, Heaphy ELG, Aljishi Y, Ahmed W, Eljaaly K, Al-Turkistani, et al. Molecular epidemiology and outcome of carbapenem-resistant Enterobacterales in Saudi Arabia. BMC Infect Dis 2022; 22(1): 542. https://doi.org/10.1186/s12879-022-07507-y.

    • Search Google Scholar
    • Export Citation
  • 39.

    Nulsopapon P, Pongchaidecha M, Nasomsong W, Polwichahi P, Suphankong S, Sirichote P, et al. Antimicrobial activity profiles and potential antimicrobial regimens against carbapenem-resistant Enterobacterales isolate from multi-centers in Western Thailand. Antibiotics 2022; 11(3): 355. https://doi.org/10.3390/antibiotics11030355.

    • Search Google Scholar
    • Export Citation
  • 40.

    Kopotsa K, Sekyere JO, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci 2019; 1457(1): 6191. https://doi.org/10.1111/nyas.14223.

    • Search Google Scholar
    • Export Citation
  • 41.

    Ozger HS, Evren E, Yildiz SS, Erol C, Bayrakdar F, Azap O, et al. Ceftazidime - avibactam susceptibility among carbapenem-resistant Enterobacterales in a pilot study in Turkey. Acta Microbiol Immunol Hung 2021; Jul; 29. https://doi.org/10.1556/030.2021.01525.

    • Search Google Scholar
    • Export Citation
  • 42.

    Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017; 7(2): 153163. https://doi.org/10.1016/S1473-3099(16)30257-2.

    • Search Google Scholar
    • Export Citation
  • 43.

    Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis 2016; 63(6): 754762. https://doi.org/10.1093/cid/ciw378.

    • Search Google Scholar
    • Export Citation
  • 44.

    Zhang W, Guo Y, Li J, Zhang Y, Yang Y, Dong D, et al. In vitro and in vivo bactericidal activity of ceftazidime-avibactam against carbapenemase–producing Klebsiella pneumoniae. Antimicrob Resist Infect Control 2018; 7: 29. https://doi.org/10.1186/s13756-018-0435-9.

    • Search Google Scholar
    • Export Citation
  • 45.

    Nasomsong W, Nulsopapon P, Changpradub D, Pongchaidecha M, Pungcharoenkijkul S, Juntanawiwat P, et al. The potential use of ceftazidime-avibactam against carbapenem resistant Klebsiella pneumoniae clinical isolates harboring different carbapenemase types in a Thai University Hospital. Drug Des Devel Ther 2021; 15: 30953104. https://doi.org/10.2147/DDDT.S321147.

    • Search Google Scholar
    • Export Citation
  • 46.

    Castanheira M, Davis AP, Mendes RE, Serio AW, Krause KM, Flamm RK. In vitro activity of plazomicin against gram-negative and gram-positive isolates collected from u.s. hospitals and comparative activities of aminoglycosides against carbapenem-resistant Enterobacteriaceae and isolates carrying carbapenemase genes. Antimicrob Agents Chemother 2018; 62(8): e0031318. https://doi.org/10.1128/aac.00313-18.

    • Search Google Scholar
    • Export Citation
  • 47.

    Pogue JM, Bonomo BA, Kaye KS. Ceftazidime/avibactam, meropenem/vaborbactam, or both? clinical and formulary considerations. Clin Infect Dis 2019; 68(3): 519524. https://doi.org/10.1093/cid/ciy576.

    • Search Google Scholar
    • Export Citation
  • 48.

    Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant gram-negative bacteria. Front Cell Infect Microbiol 2022; 12: 823684. https://doi.org/10.3389/fcimb.2022.823684.

    • Search Google Scholar
    • Export Citation
  • 49.

    Haidar G, Clancy CJ, Chen L, Samanta P, Shields RK, Kreiswirth BN, et al. Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2017; 61(9): e0064217. https://doi.org/10.1128/AAC.00642-17.

    • Search Google Scholar
    • Export Citation
  • 50.

    Hemarajata P, Humphries RM. Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J Antimicrob Chemother 2019; 74(5): 122411243. https://doi.org/10.1093/jac/dkz026.

    • Search Google Scholar
    • Export Citation
  • 51.

    Castanheira M, Mills JC, Costello SE, Jones RN, Sader HS. Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. Hospitals (2011 to 2013) and characterization of β-lactamase-producing strains. Antimicrob Agents Chemother 2015; 59(6): 350917. https://doi.org/10.1128/aac.00163-15.

    • Search Google Scholar
    • Export Citation
  • 52.

    Zeng W, Liao W, Zhao Y, Wang L, Shu H, Jia H, et al. A selective medium for screening ceftazidime/avibactam resistance in carbapenem-resistant Enterobacterales. Front Microbiol 2022; 13: 956044. https://doi.org/10.3389/fmicb.2022.956044.

    • Search Google Scholar
    • Export Citation
  • 53.

    Jonge BLM, Karlowsky JA, Kazmierczak KM, Biedenbach DJ, Sahm DF, Nicholsa WW. In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM global surveillance study (2012 to 2014). Antimicrob Agents Chemother 2016; 60(5): 31639. https://doi.org/10.1128/AAC.03042-15.

    • Search Google Scholar
    • Export Citation
  • 54.

    Livermore DM, Mushtaq S, Doumith M, Jamrozy D, Nichols WW, Woodford N. Selection of mutants with resistance or diminished susceptibility to ceftazidime/avibactam from ESBL- and AmpC-producing Enterobacteriaceae. J Antimicrob Chemother 2018; 73(12): 33363345. https://doi.org/10.1093/jac/dky363.

    • Search Google Scholar
    • Export Citation
  • 55.

    Winkler ML, Papp-Wallace KM, Taracila MA, Bonomo RA. Avibactam and inhibitor-resistant SHV beta-lactamases. Antimicrob Agents Chemother 2015; 59(7): 37003709. https://doi.org/10.1128/AAC.04405-14.

    • Search Google Scholar
    • Export Citation
  • 56.

    Fröhlich C, Sorum V, Thomassen AM, Johnsen PJ, Leiros HS, Samuelsen O. OXA-48-mediated ceftazidime-avibactam resistance is associated with evolutionary trade-offs. mSphere 2019; 4(2): e00024-19. https://doi.org/10.1128/mSphere.00024-19.

    • Search Google Scholar
    • Export Citation
  • 57.

    Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis 2019; 69(7): 565575. https://doi.org/10.1093/cid/ciz830.

    • Search Google Scholar
    • Export Citation
  • 58.

    Zhang Y, Kashikar A, Bush K. In vitro activity of plazomicin against β-lactamase-producing carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother 2017; 72(10): 27922795. https://doi.org/10.1093/jac/dkx261.

    • Search Google Scholar
    • Export Citation
  • 59.

    Fleischmann WA, Quaintance KEG, Patel R. In vitro activity of plazomicin compared to amikacin, gentamicin, and tobramycin against multidrug-resistant aerobic gram-negative bacilli. Antimicrob Agents Chemother 2020; 64(2): e0171119. https://doi.org/10.1128/aac.01711-19.

    • Search Google Scholar
    • Export Citation
  • 60.

    Johnston BD, Thuras P, Porter SB, Anacker M, Vonbank B, Vagnone SP, et al. Activity of plazomicin against carbapenem-intermediate or resistant Escherichia coli isolates from the United States and international sites in relation to clonal background, resistance genes, co-resistance, and region. J Antimicrob Chemother 2021; 76(8): 20612070. https://doi.org/10.1093/jac/dkab150.

    • Search Google Scholar
    • Export Citation
  • 61.

    Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist 2021; 3(3): 121. https://doi.org/10.1093/jacamr/dlab092.

    • Search Google Scholar
    • Export Citation
  • 62.

    Bail L, Ito CAS, Arend LNVS, Pilonetto M, Nogueira KS, Tuon FF. Distribution of genes encoding 16s rRNA methyltransferase in plazomicin-nonsusceptible carbapenemase-producing Enterobacterales in Brazil. Diagn Microbiol Infect Dis 2021; 99(2): 115239. https://doi.org/10.1016/j.diagmicrobio.2020.115239.

    • Search Google Scholar
    • Export Citation
  • 63.

    Pragasam KA, Jennifer SL, Solaimalai D, Sethuvel MPD, Rachel T, Elangovan D, et al. Expected plazomicin susceptibility in India based on the prevailing aminoglycoside resistance mechanisms in gram-negative organisms derived from whole-genome sequencing. Indian J Med Microbiol 2020; 38(3–4): 313318. https://doi.org/10.4103/ijmm.IJMM_20_384.

    • Search Google Scholar
    • Export Citation
  • 64.

    Eljaaly K, Alharbi A, Alshehri S, Ortwine JK, Pogue JM. Plazomicin: a novel aminoglycoside for the treatment of resistant gram-negative bacterial infections. Drugs 2019; 79(3): 243269. https://doi.org/10.1007/s40265-019-1054-3.

    • Search Google Scholar
    • Export Citation
  • 65.

    Taylor E, Sriskandan S, Woodford N, Hopkins KL. High prevalence of 16s rRNA methyltransferases among carbapenemase-producing Enterobacteriaceae in the UK and Ireland. Int J Antimicrob Agents 2018; 52(2): 278282. https://doi.org/10.1016/j.ijantimicag.2018.03.016.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 0 0 0
May 2024 0 0 0
Jun 2024 692 4 5
Jul 2024 261 6 9
Aug 2024 0 0 0