Carbapenem-resistant Enterobacterales (CRE) have become a major public health problem worldwide. The aim of this study was to investigate efficacy of ceftazidime/avibactam and plazomicin on carbapenem-resistant Klebsiella pneumoniae and Escherichia coli isolates. Susceptibility of imipenem, meropenem, ertapenem, ceftazidime/avibactam and plazomicin was investigated by broth-microdilution method. Major carbapenemases NDM, VIM, IMP, KPC, OXA-48 as well as other β-lactamases namely, TEM, SHV, OXA-1-like, CTX-M, ACC, FOX, MOX, DHA, CIT, EBC, VEB, GES, PER were investigated by PCR. A total of 120 carbapenem-resistant isolates (60 E. coli and 60 K. pneumoniae) were included in this study and blaOXA-48-like was found in 78.33%, blaNDM in 26.66%, blaKPC in 7.5%, blaIMP in 5.83%, and blaVIM in 5%. Among 94 isolates with the blaOXA-48-like gene, 22.3% were resistant to ceftazidime/avibactam and 51.1% were resistant to plazomicin. Of 32 isolates with blaNDM, 31 (96.9%) were resistant to ceftazidime/avibactam and 30 (93.75%) were resistant to plazomicin, and both antibiotics had limited effects against blaNDM carriers (P < 0.001). Of the 12 isolates with blaNDM+OXA-48 combination, 11 (91.7%) were resistant to ceftazidime/avibactam and plazomicin. The effect of both antibiotics was significantly lower in strains with blaNDM+OXA-48 combination (P < 0.005).
The most common carbapenemase genes in this study were blaOXA-48-like and blaNDM. Ceftazidime/avibactam demonstrated a good efficacy among OXA-48 producing K. pneumoniae and E. coli, however, plazomicin had a significantly lower antibacterial effect in our study. Both antimicrobial agents should be considered as an option by evaluating combined susceptibility results and gene patterns obtained by regional and global molecular data in the treatment of CRE infections.
World Health Organization antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance [Accessed 5 July 2023].
European Centre for Disease Prevention and Control (ECDC) Technical Report. Assessing the health burden of infections with antibiotic-resistant bacteria in the EU/EEA, 2016-2020. Eur Centre Dis Prev Control. https://www.ecdc.europa.eu/en/publications-data/health-burden-infections-antibiotic-resistant-bacteria-2016-2020 [Accessed 4 July 2023].
Tompkins K, Duin DV. Treatment for carbapenem resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis 2021; 40(10): 2053–2068. https://doi.org/10.1007/s10096-021-04296-1.
World Health Organization WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed [Accessed 3 July 2023].
Angelis DG, Giacomo DP, Posteraro B, Sanguinetti M, Tumbarello M. Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21: 5090. https://doi.org/10.3390/ijms21145090.
Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother 2018; 62: e01076–18. https://doi.org/10.1128/AAC.01076-18.
Ambler RP. The structure of β-lactamases. Philos Trans R Soc B Biol Sci 1980; 289: 321–331. https://doi.org/10.1098/rstb.1980.0049.
Palzkill T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci 2018; 5: 16. https://doi.org/10.3389/fmolb.2018.00016.
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, et al. Lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol 2019; 431: 3472–3500. https://doi.org/10.1016/j.jmb.2019.04.002.
Codjoe FS, Donkor ES. Carbapenem resistance: a review. Med Sci 2018; 6(1): 1. https://doi.org/10.3390/medsci6010001.
Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin Infect Dis 2019; 69(7): 521–528. https://doi.org/10.1093/cid/ciz824.
Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis 2016; 3(1): 15–21. https://doi.org/10.1177/2049936115621709.
Wang Y, Wang J, Wang R, Cai Y. Resistance to ceftazidime-avibactam and underlying mechanisms. J Glob Antimicrob Resist 2020; 22: 18–27. https://doi.org/10.1016/j.jgar.2019.12.009.
Wiens PL, Walkty A, Karlowsky JA. Ceftazidime-avibactam: an evidence-based review of its pharmacology and potential use in the treatment of gram-negative bacterial infections. Core Evid 2014; 9: 13–25. https://doi.org/10.2147/CE.S40698.
Shirley M. Ceftazidime-avibactam: a review in the treatment of serious gram-negative bacterial infections. Drugs 2018; 78(6): 675–692. https://doi.org/10.1007/s40265-018-0902-x.
Saravolatz LD, Stein GE. Plazomicin: a new aminoglycoside. Clin Infect Dis 2020; 70(4): 704–709. https://doi.org/10.1093/cid/ciz640.
Zhanel GG, Lawson CD, Zelenitsky S, Findlay B, Schweizer F, Adam H, et al. Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti Infect Ther 2012; 10(4): 495–473. https://doi.org/10.1586/eri.12.25.
Walktya A, Karlowskya JA, Baxtera MR, Adama JH, Zhanel GG. In vitro activity of plazomicin against gram-negative and gram-positive bacterial pathogens isolated from patients in canadian hospitals from 2013 to 2017 as part of the CANWARD surveillance study. Antimicrob Agents Chemother 2019; 63(1): e02068–18. https://doi.org/10.1128/AAC.02068-18.
Hansen GT. Continuous evolution: perspective on the epidemiology of carbapenemase resistance among enterobacterales and other gram-negative bacteria. Infect Dis Ther 2021; 10(1): 75–92. https://doi.org/10.1007/s40121-020-00395-2.
European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST reading guide for broth dilution, Version 4.0; 2022. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2022_manuals/Reading_guide_BMD_v_4.0_2022.pdf [Accessed 1 May 2022].
European Society of Clinical Microbiology and Infectious Diseases. European committee on antimicrobial susceptibility testing breakpoint tables for interpretation of MICs and zone diameters, Version 12.0; 2022. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf [Accessed 30 May 2022].
Clinical And Laboratory Standards Institute. Performance Standards for antimicrobial susceptibility testing, 33rd Edition; 2023. http://em100.edaptivedocs.net/GetDoc.aspx?doc=CLSI%20M100%20ED33:2023&scope=user [Accessed 10 April 2023].
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST, Version 12.0; 2022. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/QC/v_12.0_EUCAST_QC_tables_routine_and_extended_QC.pdf [Accessed 2 May 2022].
Moskowitz SM, Foster JM, Emerson J, Burns JL. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 2004; 42(5): 1915–1922. https://doi.org/10.1128/JCM.42.5.1915-1922.2004.
Dallenne C, Costa AD, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65(3): 490–495. https://doi.org/10.1093/jac/dkp498.
Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JDD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol 2012; 50(12): 3877–3880. https://doi.org/10.1128/JCM.02117-12.
Mangoni DE, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin Microbiol Infect 2019; 25(8): 943–950. https://doi.org/10.1016/j.cmi.2019.04.013.
Tilahun M, Kassa Y, Gedefie A, Ashagire M. Emerging carbapenem-resistant Enterobacteriaceae infection, its epidemiology and novel treatment options: a review. Infect Drug Resist 2021; 14: 4363–4374. https://doi.org/10.2147/IDR.S337611.
Oliveira J, Reygaert WC. Gram negative bacteria. In: StatPearls (Internet). StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK538213/ [Accessed 3 July 2023].
Wei Y, Xio L, Luo Q, Chen Y, Ji J, Ying C, et al. In vitro activity comparison of ceftazidime-avibactam and aztreonam-avibactam against bloodstream infections with carbapenem-resistant organisms in China. Front Cell Infect Microbiol 2021; 11: 780365. https://doi.org/10.3389/fcimb.2021.780365.
Nasomsong W, Nulsopapon P, Changpradub D, Pongchaidecha M, Pungcharoenkijkul S, Juntanawiwat P, et al. The potential use of ceftazidime-avibactam against carbapenem resistant Klebsiella pneumoniae clinical isolates harboring different carbapenemase types in a Thai University Hospital. Drug Des Devel Ther 2021; 15: 3095–3104. https://doi.org/10.2147/DDDT.S321147.
Genç S, Kolaylı F, Özçelik E. Molecular characterization of carbapenemase producing Klebsiella pneumoniae strains by multiplex PCR and PFGE methods: the first K. pneumoniae isolates co-producing OXA-48/KPC and KPC/NDM in Turkey. J Infect Chemother 2022; 28(2): 192–198. https://doi.org/10.1016/j.jiac.2021.10.009.
Çakar A, Akyön Y, Gür D, Karatuna O, Öğünç D, Baysan BÖ, et al. Investigation of carbapenemases in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains isolated in 2014 in Turkey. Mikrobiyol Bul 2016; 50(1): 21–33. https://doi.org/10.5578/mb.10695.
Ozger HS, Evren E, Yıldız SS, Erol C, Bayraktar F, Azap O, et al. Ceftazidime-avibactam susceptibility among carbapenem-resistant Enterobacteales in a pilot study in Turkey. Acta Microbiol Immunol Hung 2021; 68(4): 256–261. https://doi.org/10.1556/030.2021.01525.
Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017; 7(2): 153–163. https://doi.org/10.1016/S1473-3099(16)30257-2.
Duin VD, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulance 2017; 8(4): 460–469. https://doi.org/10.1080/21505594.2016.1222343.
Tawfick MM, Alshareef WA, Bendary HA, Elmahalawy H, Abdulall K. The emergence of carbapenemase blaNDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. Eur J Clin Microbiol Infect Dis 2020; 39(7): 1251–1259. https://doi.org/10.1007/s10096-020-03839-2.
Alraddadi BM, Heaphy ELG, Aljishi Y, Ahmed W, Eljaaly K, Al-Turkistani, et al. Molecular epidemiology and outcome of carbapenem-resistant Enterobacterales in Saudi Arabia. BMC Infect Dis 2022; 22(1): 542. https://doi.org/10.1186/s12879-022-07507-y.
Nulsopapon P, Pongchaidecha M, Nasomsong W, Polwichahi P, Suphankong S, Sirichote P, et al. Antimicrobial activity profiles and potential antimicrobial regimens against carbapenem-resistant Enterobacterales isolate from multi-centers in Western Thailand. Antibiotics 2022; 11(3): 355. https://doi.org/10.3390/antibiotics11030355.
Kopotsa K, Sekyere JO, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci 2019; 1457(1): 61–91. https://doi.org/10.1111/nyas.14223.
Ozger HS, Evren E, Yildiz SS, Erol C, Bayrakdar F, Azap O, et al. Ceftazidime - avibactam susceptibility among carbapenem-resistant Enterobacterales in a pilot study in Turkey. Acta Microbiol Immunol Hung 2021; Jul; 29. https://doi.org/10.1556/030.2021.01525.
Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017; 7(2): 153–163. https://doi.org/10.1016/S1473-3099(16)30257-2.
Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis 2016; 63(6): 754–762. https://doi.org/10.1093/cid/ciw378.
Zhang W, Guo Y, Li J, Zhang Y, Yang Y, Dong D, et al. In vitro and in vivo bactericidal activity of ceftazidime-avibactam against carbapenemase–producing Klebsiella pneumoniae. Antimicrob Resist Infect Control 2018; 7: 2–9. https://doi.org/10.1186/s13756-018-0435-9.
Nasomsong W, Nulsopapon P, Changpradub D, Pongchaidecha M, Pungcharoenkijkul S, Juntanawiwat P, et al. The potential use of ceftazidime-avibactam against carbapenem resistant Klebsiella pneumoniae clinical isolates harboring different carbapenemase types in a Thai University Hospital. Drug Des Devel Ther 2021; 15: 3095–3104. https://doi.org/10.2147/DDDT.S321147.
Castanheira M, Davis AP, Mendes RE, Serio AW, Krause KM, Flamm RK. In vitro activity of plazomicin against gram-negative and gram-positive isolates collected from u.s. hospitals and comparative activities of aminoglycosides against carbapenem-resistant Enterobacteriaceae and isolates carrying carbapenemase genes. Antimicrob Agents Chemother 2018; 62(8): e00313–18. https://doi.org/10.1128/aac.00313-18.
Pogue JM, Bonomo BA, Kaye KS. Ceftazidime/avibactam, meropenem/vaborbactam, or both? clinical and formulary considerations. Clin Infect Dis 2019; 68(3): 519–524. https://doi.org/10.1093/cid/ciy576.
Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant gram-negative bacteria. Front Cell Infect Microbiol 2022; 12: 823684. https://doi.org/10.3389/fcimb.2022.823684.
Haidar G, Clancy CJ, Chen L, Samanta P, Shields RK, Kreiswirth BN, et al. Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2017; 61(9): e00642–17. https://doi.org/10.1128/AAC.00642-17.
Hemarajata P, Humphries RM. Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J Antimicrob Chemother 2019; 74(5): 12241–1243. https://doi.org/10.1093/jac/dkz026.
Castanheira M, Mills JC, Costello SE, Jones RN, Sader HS. Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. Hospitals (2011 to 2013) and characterization of β-lactamase-producing strains. Antimicrob Agents Chemother 2015; 59(6): 3509–17. https://doi.org/10.1128/aac.00163-15.
Zeng W, Liao W, Zhao Y, Wang L, Shu H, Jia H, et al. A selective medium for screening ceftazidime/avibactam resistance in carbapenem-resistant Enterobacterales. Front Microbiol 2022; 13: 956044. https://doi.org/10.3389/fmicb.2022.956044.
Jonge BLM, Karlowsky JA, Kazmierczak KM, Biedenbach DJ, Sahm DF, Nicholsa WW. In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM global surveillance study (2012 to 2014). Antimicrob Agents Chemother 2016; 60(5): 3163–9. https://doi.org/10.1128/AAC.03042-15.
Livermore DM, Mushtaq S, Doumith M, Jamrozy D, Nichols WW, Woodford N. Selection of mutants with resistance or diminished susceptibility to ceftazidime/avibactam from ESBL- and AmpC-producing Enterobacteriaceae. J Antimicrob Chemother 2018; 73(12): 3336–3345. https://doi.org/10.1093/jac/dky363.
Winkler ML, Papp-Wallace KM, Taracila MA, Bonomo RA. Avibactam and inhibitor-resistant SHV beta-lactamases. Antimicrob Agents Chemother 2015; 59(7): 3700–3709. https://doi.org/10.1128/AAC.04405-14.
Fröhlich C, Sorum V, Thomassen AM, Johnsen PJ, Leiros HS, Samuelsen O. OXA-48-mediated ceftazidime-avibactam resistance is associated with evolutionary trade-offs. mSphere 2019; 4(2): e00024-19. https://doi.org/10.1128/mSphere.00024-19.
Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis 2019; 69(7): 565–575. https://doi.org/10.1093/cid/ciz830.
Zhang Y, Kashikar A, Bush K. In vitro activity of plazomicin against β-lactamase-producing carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother 2017; 72(10): 2792–2795. https://doi.org/10.1093/jac/dkx261.
Fleischmann WA, Quaintance KEG, Patel R. In vitro activity of plazomicin compared to amikacin, gentamicin, and tobramycin against multidrug-resistant aerobic gram-negative bacilli. Antimicrob Agents Chemother 2020; 64(2): e01711–19. https://doi.org/10.1128/aac.01711-19.
Johnston BD, Thuras P, Porter SB, Anacker M, Vonbank B, Vagnone SP, et al. Activity of plazomicin against carbapenem-intermediate or resistant Escherichia coli isolates from the United States and international sites in relation to clonal background, resistance genes, co-resistance, and region. J Antimicrob Chemother 2021; 76(8): 2061–2070. https://doi.org/10.1093/jac/dkab150.
Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist 2021; 3(3): 1–21. https://doi.org/10.1093/jacamr/dlab092.
Bail L, Ito CAS, Arend LNVS, Pilonetto M, Nogueira KS, Tuon FF. Distribution of genes encoding 16s rRNA methyltransferase in plazomicin-nonsusceptible carbapenemase-producing Enterobacterales in Brazil. Diagn Microbiol Infect Dis 2021; 99(2): 115239. https://doi.org/10.1016/j.diagmicrobio.2020.115239.
Pragasam KA, Jennifer SL, Solaimalai D, Sethuvel MPD, Rachel T, Elangovan D, et al. Expected plazomicin susceptibility in India based on the prevailing aminoglycoside resistance mechanisms in gram-negative organisms derived from whole-genome sequencing. Indian J Med Microbiol 2020; 38(3–4): 313–318. https://doi.org/10.4103/ijmm.IJMM_20_384.
Eljaaly K, Alharbi A, Alshehri S, Ortwine JK, Pogue JM. Plazomicin: a novel aminoglycoside for the treatment of resistant gram-negative bacterial infections. Drugs 2019; 79(3): 243–269. https://doi.org/10.1007/s40265-019-1054-3.
Taylor E, Sriskandan S, Woodford N, Hopkins KL. High prevalence of 16s rRNA methyltransferases among carbapenemase-producing Enterobacteriaceae in the UK and Ireland. Int J Antimicrob Agents 2018; 52(2): 278–282. https://doi.org/10.1016/j.ijantimicag.2018.03.016.