The present study aimed to explore the genomic characteristics of eight New Delhi metallo-β-lactamase-1 (NDM-1)-producing carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates from a Bulgarian tertiary hospital (2021–2023) in comparison to blaNDM-1-positive strains originating from the Balkans. Antimicrobial susceptibility testing, phenotypic assays for carbapenemase activity, PCR screening, whole-genome sequencing (WGS), and phylogenomic analysis were performed. Seven of the CRPA isolates investigated (Minimum inhibitory concentration values of imipenem and meropenem >32 mg L−1) were also resistant to piperacillin-tazobactam, ceftazidime, ceftazidime-avibactam, cefepime, ceftolozane-tazobactam, amikacin, tobramycin, ciprofloxacin, and levofloxacin, but were susceptible to colistin (0.5–2 mg L−1) and cefiderocol (0.25–1 mg L−1). The P. aeruginosa Pae57 isolate (designated Pae57) remained susceptible to aminoglycosides as well. WGS uncovered the co-existence of blaNDM-1 and blaGES-1. The isolates belonged to the ST654 high-risk clone, except for Pae57 (ST611). Alignment against reference sequences revealed the presence of a Tn21 transposon harboring bleMBL–blaNDM-1–ISAba125. It was similar to that found in the P. aeruginosa ST654 NDM1_1 strain (GCA_020404785.1) from Serbia. Phylogenomic analysis of our isolates indicated that seven of them (ST654) differed from each other in no more than 44 single-nucleotide polymorphisms (SNPs). Pae57 (ST611) was strikingly different (>21,700 SNPs) compared to all Balkan strains. In conclusion, to our knowledge this is the first report of blaNDM-1-positive P. aeruginosa ST611 isolation, which indicates the transmission dynamics of this determinant between high-risk and potentially high-risk P. aeruginosa clones. Obtained results unveil the dissemination of clonally related NDM-1-producing P. aeruginosa strains in the monitored hospital for approximately a 2-year period.
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 2020; 33(3): e00181–19. https://doi.org/10.1128/CMR.00181-19.
Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an Update. Drugs 2021; 81(18): 2117–31. https://doi.org/10.1007/s40265-021-01635-6.
Behzadi P, Baráth Z, Gajdács M. It’s not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiotics 2021; 10(1): 42. https://doi.org/10.3390/antibiotics10010042.
Migiyama Y, Sakata S, Iyama S, Tokunaga K, Saruwatari K, Tomita Y, et al. Airway Pseudomonas aeruginosa density in mechanically ventilated patients: clinical impact and relation to therapeutic efficacy of antibiotics. Crit Care 2021; 25(1): 59. https://doi.org/10.1186/s13054-021-03488-7.
Mekonnen SA, El Husseini N, Turdiev A, Carter JA, Belew AT, El-Sayed NM, et al. Catheter-associated urinary tract infection by Pseudomonas aeruginosa progresses through acute and chronic phases of infection. Proc Natl Acad Sci USA 2022; 119(50): e2209383119. https://doi.org/10.1073/pnas.2209383119.
Gomersall J, Mortimer K, Hassan D, Whitehead KA, Slate AJ, Ryder SF, et al. Ten-year analysis of bacterial colonization and outcomes of major burn patients with a focus on Pseudomonas aeruginosa. Microorganisms 2023; 12(1): 42. https://doi.org/10.3390/microorganisms12010042.
Paprocka P, Durnaś B, Mańkowska A, Król G, Wollny T, Bucki R. Pseudomonas aeruginosa infections in cancer patients. Pathogens 2022; 11(6): 679. https://doi.org/10.3390/pathogens11060679.
Yakout MA, Abdelwahab IA. Diabetic foot ulcer infections and Pseudomonas aeruginosa biofilm production during the COVID-19 pandemic. J Pure Appl Microbiol 2022; 16(1): 138–46. https://doi.org/10.22207/JPAM.16.1.02.
Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19(5): 331–42. https://doi.org/10.1038/s41579-020-00477-5.
Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399(10325): 629–55. https://doi.org/10.1016/S0140-6736(21)02724-0.
Jangra V, Sharma N, Chhillar AK. Therapeutic approaches for combating Pseudomonas aeruginosa infections. Microbes Infect 2022; 24(4): 104950. https://doi.org/10.1016/j.micinf.2022.104950.
CDC. Antibiotic resistance threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html [Accessed 4 May 2024].
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18(3): 318–27. https://doi.org/10.1016/S1473-3099(17)30753-3.
Peykov S, Strateva T. Whole-genome sequencing-based resistome analysis of nosocomial multidrug-resistant non-fermenting Gram-negative pathogens from the Balkans. Microorganisms 2023; 11(3): 651. https://doi.org/10.3390/microorganisms11030651.
WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2022 – 2020 data. Copenhagen: WHO Regional Office for Europe; 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data [Accessed 3 May 2024].
European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) – annual epidemiological report 2022. Stockholm: ECDC; 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2022[Accessed 3 May 2024].
Glen KA, Lamont IL. β-lactam resistance in Pseudomonas aeruginosa: current status, future prospects. Pathogens 2021; 10(12): 1638. https://doi.org/10.3390/pathogens10121638.
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-Lactamase Gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrob Agents Chemother 2009; 53(12): 5046–54. https://doi.org/10.1128/AAC.00774-09.
Struelens MJ, Monnet DL, Magiorakos AP, Santos O’Connor F, Giesecke J, the European NDM-1 Survey Participants. New Delhi metallo-beta-lactamase 1–producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill 2010; 15(46): 19716. https://doi.org/10.2807/ese.15.46.19716-en.
Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begovic J, Topisirovic L, et al. Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother 2011; 55(8): 3929–31. https://doi.org/10.1128/AAC.00226-11.
Tsilipounidaki K, Gkountinoudis CG, Florou Z, Fthenakis GC, Miriagou V, Petinaki E. First detection and molecular characterization of Pseudomonas aeruginosa blaNDM-1 ST308 in Greece. Microorganisms 2023; 11(9): 2159. https://doi.org/10.3390/microorganisms11092159.
Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 2018; 46(W1): W282–8. https://doi.org/10.1093/nar/gky467.
The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters, Version 14.0., 2024. Available online: https://eucast.org [Accessed 8 May 2024].
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18(3): 268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Prevots DR, et al. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis 2018; 67(12): 1803–14. https://doi.org/10.1093/cid/ciy378.
Lixandru BE, Cotar AI, Straut M, Usein CR, Cristea D, Ciontea S, et al. Carbapenemase-producing Klebsiella pneumoniae in Romania: a six-month survey. PLoS ONE 2015; 10(11): e0143214. https://doi.org/10.1371/journal.pone.0143214.
Poirel L, Nordmann P. Acquired carbapenem-hydrolyzing beta-lactamases and their genetic support. Curr Pharm Biotechnol 2002; 3(2): 117–27. https://doi.org/10.2174/1389201023378427.
Afgan E, Nekrutenko A, Grüning BA, Blankenberg D, Goecks J, Schatz MC, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 2022; 50(W1): W345–51. https://doi.org/10.1093/nar/gkac247.
Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 2004; 42(12): 5644–9. https://doi.org/10.1128/JCM.42.12.5644-5649.2004.
Thrane SW, Taylor VL, Lund O, Lam JS, Jelsbak L. Application of whole-genome sequencing data for O-specific antigen analysis and in silico serotyping of Pseudomonas aeruginosa isolates. J Clin Microbiol 2016; 54(7): 1782–8. https://doi.org/10.1128/JCM.00349-16.
Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ. CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas loci. CRISPR J 2020; 3(6): 462–9. https://doi.org/10.1089/crispr.2020.0059.
Tafaj S, Gona F, Rodrigues CF, Kapisyzi P, Caushi F, Rossen JW, et al. Whole-genome sequences of two NDM-1-producing Pseudomonas aeruginosa strains isolated in a clinical setting in Albania in 2018. Microbiol Resour Announc 2020; 9(1): e01291–19. https://doi.org/10.1128/MRA.01291-19.
Kostyanev T, Nguyen MN, Markovska R, Stankova P, Xavier BB, Lammens C, et al. Emergence of ST654 Pseudomonas aeruginosa co-harbouring blaNDM-1 and blaGES-5 in novel class I integron In1884 from Bulgaria. J Glob Antimicrob Resist 2020; 22: 672–3. https://doi.org/10.1016/j.jgar.2020.06.008.
Kabic J, Fortunato G, Vaz-Moreira I, Kekic D, Jovicevic M, Pesovic J, et al. Dissemination of metallo-β-lactamase-producing Pseudomonas aeruginosa in Serbian hospital settings: expansion of ST235 and ST654 clones. Int J Mol Sci 2023; 24(2): 1519. https://doi.org/10.3390/ijms24021519.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30(14): 2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31(22): 3691–3. https://doi.org/10.1093/bioinformatics/btv421.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30(9): 1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Letunic I, Bork P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49(W1): W293–6. https://doi.org/10.1093/nar/gkab301.
European Centre for Disease Prevention and Control. Healthcare-associated infections acquired in intensive care units. In: ECDC. Annual epidemiological report for 2020. Stockholm: ECDC; 2024. Available online: https://www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-acquired-intensive-care-units-annual [Accessed 8 May 2024].
Malisova L, Vrbova I, Pomorska K, Jakubu V, Zemlickova H. In vitro activity of cefiderocol against carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa. Microb Drug Resist 2023; 29(10): 485–91. https://doi.org/10.1089/mdr.2023.0090.
Karakonstantis S, Rousaki M, Kritsotakis EI. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance. Antibiotics 2022; 11(6): 723. https://doi.org/10.3390/antibiotics11060723.
Nurjadi D, Kocer K, Chanthalangsy Q, Klein S, Heeg K, Boutin S. New Delhi metallo-beta-lactamase facilitates the emergence of cefiderocol resistance in Enterobacter cloacae. Antimicrob Agents Chemother 2022; 66(2): e02011–21. https://doi.org/10.1128/AAC.02011-21.
Schneider I, Keuleyan E, Rasshofer R, Markovska R, Queenan AM, Bauernfeind A. VIM-15 and VIM-16, two new VIM-2-Like metallo-β-lactamases in Pseudomonas aeruginosa isolates from Bulgaria and Germany. Antimicrob Agents Chemother 2008; 52(8): 2977–9. https://doi.org/10.1128/AAC.00175-08.
Strateva T, Setchanova L, Peykov S. Characterization of a Bulgarian VIM-2 metallo-β-lactamase-producing Pseudomonas aeruginosa clinical isolate belonging to the high-risk sequence type 111. Infect Dis (Lond) 2021; 53(11): 883–7. https://doi.org/10.1080/23744235.2021.1934531.
Stoikov I, Ivanov IN, Donchev D, Teneva D, Dobreva E, Hristova R, et al. Genomic characterization of IMP-producing Pseudomonas aeruginosa in Bulgaria reveals the emergence of IMP-100, a novel plasmid-mediated variant coexisting with a chromosomal VIM-4. Microorganisms 2023; 11(9): 2270. https://doi.org/10.3390/microorganisms11092270.
Oliver A, Rojo-Molinero E, Arca-Suarez J, Beşli Y, Bogaerts P, Cantón R, et al. Pseudomonas aeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: update from ESGARS-ESCMID/ISARPAE Group. Clin Microbiol Infect 2024; 30(4): 469–80. https://doi.org/10.1016/j.cmi.2023.12.026.
Opazo-Capurro A, Morales-León F, Jerez C, Olivares-Pacheco J, Alcalde-Rico M, González-Muñoz P, et al. Isolation of an extensively drug-resistant Pseudomonas aeruginosa exoS+/O4 strain belonging to the “high-risk” clone ST654 and coproducer of NDM-1 and the novel VIM-80. Microbiol Spectr 2022; 10(5): e01439–22. https://doi.org/10.1128/spectrum.01439-22.
Bai Y, Gong Y e, Shen F, Li H, Cheng Y, Guo J, et al. Molecular epidemiological characteristics of carbapenem-resistant Pseudomonas aeruginosa clinical isolates in southeast Shanxi, China. J Glob Antimicrob Resist 2024; 36: 301–6. https://doi.org/10.1016/j.jgar.2023.12.029.
Zhao Y, Chen D, Ji B, Zhang X, Anbo M, Jelsbak L. Whole-genome sequencing reveals high-risk clones of Pseudomonas aeruginosa in Guangdong, China. Front Microbiol 2023; 14: 1117017. https://doi.org/10.3389/fmicb.2023.1117017.
Botelho J, Tüffers L, Fuss J, Buchholz F, Utpatel C, Klockgether J, et al. Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa. EBioMedicine 2023; 90: 104532. https://doi.org/10.1016/j.ebiom.2023.104532.
Wheatley RM, MacLean RC. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. ISME J 2021; 15(5): 1420–33. https://doi.org/10.1038/s41396-020-00860-3.
Fortunato G, Vaz-Moreira I, Gajic I, Manaia CM. Insight into phylogenomic bias of blaVIM-2 or blaNDM-1 dissemination amongst carbapenem-resistant Pseudomonas aeruginosa. Int J Antimicrob Agents 2023; 61(5): 106788. https://doi.org/10.1016/j.ijantimicag.2023.106788.