Authors:
Stephanie Radeva Department of Microbiology and Virology, Medical University of Varna, Varna, Bulgaria

Search for other papers by Stephanie Radeva in
Current site
Google Scholar
PubMed
Close
,
Denis Niyazi Department of Microbiology and Virology, Medical University of Varna, Varna, Bulgaria
Laboratory of Microbiology, University Hospital “Saint Marina”- Varna, Varna, Bulgaria

Search for other papers by Denis Niyazi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3666-3802
,
Milena Bozhkova Department of Microbiology and Virology, Medical University of Varna, Varna, Bulgaria
Laboratory of Microbiology, University Hospital “Saint Marina”- Varna, Varna, Bulgaria

Search for other papers by Milena Bozhkova in
Current site
Google Scholar
PubMed
Close
, and
Temenuga Stoeva Department of Microbiology and Virology, Medical University of Varna, Varna, Bulgaria
Laboratory of Microbiology, University Hospital “Saint Marina”- Varna, Varna, Bulgaria

Search for other papers by Temenuga Stoeva in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The aim of this study is to evaluate the antimicrobial susceptibility of invasive isolates of Serratia marcescens, associated with blood stream infections (BSIs) in patients hospitalized in Varna University Hospital, Bulgaria, as well as to identify the genetic mechanisms responsible for 3rd generation cephalosporin and carbapenem-resistance among these isolates. A total of 45 consecutive S. marcescens isolates, obtained from blood cultures of 45 patients with BSIs, hospitalized during an 8-year period (2016–2023) were included. Species identification and antimicrobial susceptibility testing were done by Phoenix (BD, USA) and Vitek 2 (BioMerieux, France) systems and the results were interpreted according to EUCAST guidelines. The genetic mechanisms of beta-lactam resistance were studied by PCR. During the study period, a total of 45 patients were diagnosed with S. marcescens-associated BSIs. All infections were defined as nosocomial, predominantly intensive care unit-acquired (42.2%) and 28.8% were central venous catheter-associated. The following antimicrobial resistance rates were found: ceftriaxone, piperacillin/tazobactam, 57.8%; ceftazidime, 55.6%; cefepime, trimethoprime/sulfamethoxazole, 53.3%; gentamicin, 48.8%; ciprofloxacin, 44.5%; amikacin, 15.6%; carbapenems, 2.2%. The blaCTX-M was identified in 88.9% of the tested 3rd generation cephalosporin resistant isolates. Among these, 50% were also blaTEM positive. The single carbapenem-resistant isolate harboured blaKPC, blaCTX-M1/9, blaCMY-2 and blaTEM. This study demonstrates S. marcescens as a problematic nosocomial pathogen and we report a KPC-producing S. marcescens clinical isolate from a BSI in Bulgaria.

  • 1.

    Adeolu M, Alnajar S, Naushad S, Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. Int J Syst Evol Microbiol 2016; 66: 55755599.

    • Search Google Scholar
    • Export Citation
  • 2.

    Martin SL, Patterson C, Jerabek J. A rare case of Serratia marcescens pacemaker infection and cerebrovascular accident. Chest 2022; 162: A567.

    • Search Google Scholar
    • Export Citation
  • 3.

    Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385, 117171.

    • Search Google Scholar
    • Export Citation
  • 4.

    Hattori H, Maeda M, Nagatomo Y, Takuma T, Niki Y, Naito Y, et al. Epidemiology and risk factors for mortality in bloodstream infections: a single-center retrospective study in Japan. Am J Infect Control 2018; 46: e75e79.

    • Search Google Scholar
    • Export Citation
  • 5.

    Nielsen SL. The incidence and prognosis of patients with bacteremia. Dan Med J 2015; 62: B5128.

  • 6.

    The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 11.0, 2021. Available from: http://www.eucast.org/clinical_breakpoints/.

    • Search Google Scholar
    • Export Citation
  • 7.

    Tóth A, Mаkаi A, Jánvári L, Dаmjаnovа I, Gаjdács M, Urbán E. Chаrаctеrizаtion of а rаrе blаVIM-4 mеtаllo-β-lаctаmаsе-рroducing Sеrrаtiа mаrcеscеns clinicаl isolаtе in Hungаry. Hеliyon 2020; 6: e04231.

    • Search Google Scholar
    • Export Citation
  • 8.

    Cullеn MM, Trаil A, Robinson M, Kеаnеy M, Chаdwick PR. Sеrrаtiа mаrcеscеns outbrеаk in а nеonаtаl intеnsivе cаrе unit рromрting rеviеw of dеcontаminаtion of lаryngoscoреs. J Hosр Infеct 2005; 59 (1): 6870.

    • Search Google Scholar
    • Export Citation
  • 9.

    Рursеll K, Liаngрunsаkul S. Community-аcquirеd nеcrotising fаsciitis cаusеd by Sеrrаtiа mаrcеscеns: cаsе rерort аnd rеviеw. Еur J Clin Microbiol Infеct Dis 2001; 20: 509521.

    • Search Google Scholar
    • Export Citation
  • 10.

    Mеndеs JC, Cаsаdo A. Sеrrаtiа mаrcеscеns outbrеаk in а COVID-19 intеnsivе cаrе unit – Аrе thеrе аny fаctors sреcific to COVID-19 units thаt fаcilitаtе bаctеriаl cross-contаminаtion bеtwееn COVID-19 раtiеnts? Аm J Infеct Control 2022; 50: 223225.

    • Search Google Scholar
    • Export Citation
  • 11.

    Anonymous. Annual epidemiological report on communicable diseases in Europe 2010. Stockholm, Sweden: European Centre for Disease Prevention and Control; 2010.

    • Search Google Scholar
    • Export Citation
  • 12.

    Géry A, Mouet A, Gravey F, Fines-Guyon M, Guerin F, Ethuin F, et al. Investigation of Serratia marcescens surgical site infection outbreak associated with peroperative ultrasonography probe. J Hosp Infect 2021; 111: 184188.

    • Search Google Scholar
    • Export Citation
  • 13.

    Cilli F, Nazli-Zeka A, Arda B, Sipahi OR, Aksit-Barik S, Kepeli N, et al. Serratia marcescens sepsis outbreak caused by contaminated propofol. Аm J Infеct Control 2019; 47: 582584.

    • Search Google Scholar
    • Export Citation
  • 14.

    Liu D, Zhang LP, Huang SF, Wang Z, Chen P, Wang H, et al. Outbreak of Serratia marcescens infection due to contamination of multiple-dose vial of heparin-saline solution used to flush deep venous catheters or peripheral trocars. J Hosp Infect 2011; 77: 175176.

    • Search Google Scholar
    • Export Citation
  • 15.

    The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 11.0, 2021. Available from: http://www.eucast.org/clinical_breakpoints/.

    • Search Google Scholar
    • Export Citation
  • 16.

    Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988; 10: 867878.

    • Search Google Scholar
    • Export Citation
  • 17.

    Niyazi D, Radeva S, Bozhkova M, Savova D, Stoeva T. A cheap and simple method for DNA isolation from endonuclease producing Serratia marcescens. Iran J Public Health 2023; 52: 10891091.

    • Search Google Scholar
    • Export Citation
  • 18.

    Markovska R, Schneider I, Keuleyan E, Sredkova M, Ivanova D, Markova B, et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in Bulgarian hospitals. Microb Drug Resist 2008; 14: 119128.

    • Search Google Scholar
    • Export Citation
  • 19.

    Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399: 629655.

    • Search Google Scholar
    • Export Citation
  • 20.

    Measuring infectious causes and resistance outcomes for burden estimation. https://vizhub.healthdata.org/microbe/ [Accessed 10 Oct 2023].

    • Search Google Scholar
    • Export Citation
  • 21.

    European Centre for Disease Prevention and Control. Antimicrobial consumption in the EU/EEA [ESAC-Net] -annual epidemiological report 2022. Stockholm: ECDC; 2023.

    • Search Google Scholar
    • Export Citation
  • 22.

    Simsek M. Determination of the antibiotic resistance rates of Serratia marcescens isolates obtained from various clinical specimens. Niger J Clin Pract 2019; 22: 125130.

    • Search Google Scholar
    • Export Citation
  • 23.

    Bozkurt H, Güdücüoğlu H, Bayram Y, Gülmez S, Kutluay N, Bozkurt EN, et al. The role of serratia bacteria produced from clinical specimens in various infections and susceptibility to antimicrobials. Van Med J 2005; 12: 182188.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ferreira RL, Rezende GS, Damas MSF, Oliveira-Silva M, Pitondo-Silva A, Brito MCA, et al. Characterization of KPC-producing Serratia marcescens in an intensive care unit of a Brazilian tertiary hospital. Front Microbiol 2020; 20: 956.

    • Search Google Scholar
    • Export Citation
  • 25.

    Stock I, Grueger T, Wiedemann B. Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. Int J Antimicrob Agents 2003; 22: 3547.

    • Search Google Scholar
    • Export Citation
  • 26.

    Bolourchi N, Noori Goodarzi N, Giske CG, Nematzadeh S, Haririzadeh Jouriani F, Solgi H, et al. Comprehensive pan-genomic, resistome and virulome analysis of clinical OXA-48 producing carbapenem-resistant Serratia marcescens strains. Gene 2022; 822: 146355.

    • Search Google Scholar
    • Export Citation
  • 27.

    Miao M, Wen H, Xu P, Niu S, Lv J, Xie X, et al. Genetic diversity of Carbapenem-Resistant Enterobacteriaceae [CRE] clinical isolates from a tertiary hospital in eastern China. Front Microbiol 2019; 9: 3341.

    • Search Google Scholar
    • Export Citation
  • 28.

    Gajdács M, Urbán E. Resistance trends and epidemiology of Citrobacter-Enterobacter-Serratia in urinary tract infections of inpatients and outpatients [RECESUTI]: a 10-year survey. Medicina [Kaunas] 2019; 55: 285.

    • Search Google Scholar
    • Export Citation
  • 29.

    Markovska R, Stoeva T, Bojkova K, Mitov I. Epidemiology and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens isolates from a Bulgarian hospital. Microb Drug Resist 2014; 20: 131137.

    • Search Google Scholar
    • Export Citation
  • 30.

    Ivanova D, Markovska R, Hadjieva N, Schneider I, Mitov I, Bauernfeind A. Extended-spectrum beta-lactamase-producing Serratia marcescens outbreak in a Bulgarian hospital. J Hosp Infect 2008; 70: 6065.

    • Search Google Scholar
    • Export Citation
  • 31.

    Mlynarczyk A, Szymanek K, Sawicka-Grzelak A, Pazik J, Buczkowska T, Durlik M, et al. CTX-M and TEM as predominant types of extended spectrum beta-lactamases among Serratia marcescens isolated from solid organ recipients. Transpl Proc 2009; 41: 32533255.

    • Search Google Scholar
    • Export Citation
  • 32.

    Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009; 22: 161182.

  • 33.

    Harris PN, Ferguson JK. Antibiotic therapy for inducible AmpC β-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides? Int J Antimicrob Agents 2012; 40: 297305.

    • Search Google Scholar
    • Export Citation
  • 34.

    Pruss A, Kwiatkowski P, Sienkiewicz M, Masiuk H, Łapińska A, Kot B, et al. Similarity analysis of Klebsiella pneumoniae producing carbapenemases isolated from UTI and other infections. Antibiotics 2023; 12: 1224.

    • Search Google Scholar
    • Export Citation
  • 35.

    Pérez-Viso B, Hernández-García M, Ponce-Alonso M, Morosini MI, Ruiz-Garbajosa P, del Campo R, et al. Characterization of carbapenemase-producing Serratia marcescens and whole-genome sequencing for plasmid typing in a hospital in Madrid, Spain [2016–18]. J Antimicrob Chemother 2021; 76: 110116.

    • Search Google Scholar
    • Export Citation
  • 36.

    Hopkins K, Findlay J, Meunier D, Cummins M, Curtis S, Kustos I, et al. Serratia marcescens producing SME carbapenemases: an emerging resistance problem in the UK? J Antimicrob Chemother 2017; 72: 15351537.

    • Search Google Scholar
    • Export Citation
  • 37.

    Ymaña B, Luque N, Pons M, Ruiz J. KPC-2-NDM-1-producing Serratia marcescens: first description in Peru. New Microbes New Infect 2022; 49–50: 101051.

    • Search Google Scholar
    • Export Citation
  • 38.

    Overmeyer AJ, Prentice E, Brink A, Lennard K, Moodley C. The genomic characterization of carbapenem-resistant Serratia marcescens at a tertiary hospital in South Africa. JAC-Antimicrob Resist 2023; 5: dlad089.

    • Search Google Scholar
    • Export Citation
  • 39.

    Özcan N, Atmaca S, Özbek E. P11 the ratio and antibiotic resistance profiles of Serratia species among other causative bacteria isolated from blood cultures between 2015 and 2020. JAC-Antimicrob Resist 2022; 4: dlac004010.

    • Search Google Scholar
    • Export Citation
  • 40.

    Xu Q, Fu Y, Zhao F, Jiang Y, Yu Y. Molecular characterization of carbapenem-resistant Serratia marcescens clinical isolates in a tertiary hospital in Hangzhou, China. Infect Drug Resist 2020; 13: 9991008.

    • Search Google Scholar
    • Export Citation
  • 41.

    Cai JC, Zhou HW, Zhang R, Chen GX. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother 2008; 52: 20142018.

    • Search Google Scholar
    • Export Citation
  • 42.

    Taggar G, Rehman MA, Boerlin P, Diarra MS. Molecular epidemiology of carbapenemases in Enterobacteriales from humans, animals, food and the environment. Antibiotics 2020; 9: 693.

    • Search Google Scholar
    • Export Citation
  • 43.

    Codjoe FS, Donkor ES. Carbapenem resistance: a review. Med Sci 2017; 6: 1.

  • 44.

    Martin SL, Patterson C, Jerabek J. A rare case of Serratia marcescens pacemaker infection and cerebrovas-cular accident. Chest 2022; 162: A567.

    • Search Google Scholar
    • Export Citation
  • 45.

    Tan CY, Chiu NC, Lee KS, Chi H, Huang FY, Huang DTN, et al. Respiratory tract infections in children with tracheostomy. J Microbiol Immunol Infect 2020; 53: 315320.

    • Search Google Scholar
    • Export Citation
  • 46.

    Tsakris A, Voulgari E, Poulou A, Kimouli M, Pournaras S, Ranellou K, et al. In vivo acquisition of a plasmid-mediated bla [KPC-2] gene among clonal isolates of Serratia marcescens. J Clin Microbiol 2010; 48: 25462549.

    • Search Google Scholar
    • Export Citation
  • 47.

    Bes T, Nagano D, Martins R, Marchi P, Perdigão-Neto L, Higashino H, et al. Bloodstream Infections caused by Klebsiella pneumoniae and Serratia marcescens isolates co-harboring NDM-1 and KPC-2. Ann Clin Microbiol Antimicrob 2021; 20: 57.

    • Search Google Scholar
    • Export Citation
  • 48.

    Vilacoba E, Quiroga C, Pistorio M, Famiglietti A, Rodríguez H, Kovensky J, et al. A blaVIM-2 plasmid disseminating in extensively drug-resistant clinical Pseudomonas aeruginosa and Serratia marcescens isolates. Antimicrob Agents Chemother 2014; 58: 70177018.

    • Search Google Scholar
    • Export Citation
  • 49.

    Sabtcheva S, Stoikov I, Ivanov IN, Donchev D, Lesseva M, Georgieva S, et al. Genomic characterization of carbapenemase-producing Enterobacter hormaechei, Serratia marcescens, Citrobacter freundii, Providencia stuartii, and Morganella morganii clinical isolates from Bulgaria. Antibiotics 2024; 13: 455.

    • Search Google Scholar
    • Export Citation
  • 50.

    Ambretti S, Bassetti M, Clerici P, Petrosillo N, Tumietto F, Viale P, et al. Screening for carriage of carbapenem-resistant Enterobacteriaceae in settings of high endemicity: a position paper from an Italian working group on CRE infections. Antimicrob Resist Infect Control 2019; 8: 136.

    • Search Google Scholar
    • Export Citation
  • 51.

    Antimicrobial resistance surveillance in Europe surveillance report [2016]. https://ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2016.

    • Search Google Scholar
    • Export Citation
  • 52.

    Markovska R, Stoeva T, Boyanova L, Stankova P, Schneider I, Keuleyan E, et al. Multicentre investigation of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in Bulgarian hospitals – interregional spread of ST11 NDM-1-producing K. pneumoniae. Infect Genet Evol 2019; 69: 6167.

    • Search Google Scholar
    • Export Citation
  • 53.

    Savova D, Niyazi D, Bozhkova M, Stoeva T. Molecular epidemiology of carbapenem-resistant Enterobacteriaceae isolated from patients in COVID-19 wards and ICUs in a Bulgarian University Hospital. Acta Microbiol Immunol Hung 2023; 70: 142146.

    • Search Google Scholar
    • Export Citation
  • 54.

    Kostyanev T, Strateva T, Xavier BB, Marteva-Proevska Y, Lammens C, Markova B, et al. Detection and characterization of two NDM-1-producing Klebsiella pneumoniae strains from Bulgaria. J Antimicrob Chemother 2016; 71: 14281430.

    • Search Google Scholar
    • Export Citation
  • 55.

    Savov E, Politi L, Spanakis N, Trifonova A, Kioseva E, Tsakris A. NDM-1 hazard in the Balkan States: evidence of the first outbreak of NDM-1-producing Klebsiella pneumoniae in Bulgaria. Microb Drug Resist 2018; 24: 253259.

    • Search Google Scholar
    • Export Citation
  • 56.

    Markovska R, Stoeva T, Schneider I, Boyanova L, Popova V, Dacheva D, et al. Clonal dissemination of multilocus sequence type ST15 KPC-2-producing Klebsiella pneumoniae in Bulgaria. Acta Pathol Microbiol Scand 2015; 123: 887894.

    • Search Google Scholar
    • Export Citation
  • 57.

    Tiri B, Sensi E, Marsiliani V, Cantarini M, Priante G, Vernelli C, et al. Antimicrobial stewardship program, COVID-19, and infection control: spread of carbapenem-resistant Klebsiella pneumoniae colonization in ICU COVID-19 patients. What did not work? J Clin Med 2020; 9: 2744.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 0 0 0
Jul 2024 0 0 0
Aug 2024 877 16 10
Sep 2024 260 7 8
Oct 2024 327 5 8
Nov 2024 214 4 5
Dec 2024 9 0 0