Hospital acquired infections greatly affect recovery and survival in pediatric surgical patients. We evaluated prevalence and antimicrobial resistance of ESKAPE pathogens in neonates and infants subjected to cardiac surgery in a tertiary hospital in Central Kazakhstan between 2019 and 2023 (2,278 patients) using routine methods of microbiological detection. ESKAPE pathogens were found in 1,899 out of 2,957 samples (Staphylococcus aureus – 35.3%, Klebsiella pneumoniae – 27.8%, Acinetobacter baumannii – 14.5%, Pseudomonas aeruginosa – 12.4%, Enterobacter sp. – 8.8%, Enterococcus faecium – 1.2%). The total prevalence of ESKAPE increased significantly from 45.1 to 76.9% (P = 0.005) during the study period. The resistance significantly increased in methicillin-resistant S. aureus (MRSA, from 13.7 to 41.9%, P = 0.041) but decreased in carbapenem-resistant P. aeruginosa (from 64.3 to 37.7%, P = 0.037) and carbapenem-resistant A. baumannii (from 48.5 to 19.1%, P = 0.039). Gradual but non-significant changes were shown in third-generation cephalosporin resistant K. pneumoniae (from 63.6 to 45.2%) and carbapenem-resistant K. pneumoniae (from 0 to 8.3%). The relative prevalence of ESKAPE pathogens steadily increased in our pediatric cardiac surgery patients in 2019–2023. The most frequent were S. aureus, K. pneumoniae, and A. baumannii, with dramatically increasing tendencies for MRSA. Our results highlight the necessity for a well-designed infection control strategy and constant microbiological monitoring in pediatric cardiac surgery departments.
Nelson-McMillan K, Hornik CP, He X, Vricella LA, Jacobs JP, Hill KD, et al. Delayed sternal closure in infant heart surgery-the importance of where and when: an analysis of the STS congenital heart surgery database. Ann Thorac Surg 2016; 102(5): 1565–1572. https://doi.org/10.1016/j.athoracsur.2016.08.081.
Prasad PA, Wong-McLoughlin J, Patel S, Coffin SE, Zaoutis TE, Perlman J, et al. Surgical site infections in a longitudinal cohort of neonatal intensive care unit patients. J Perinatol 2016; 36(4): 300–305. https://doi.org/10.1038/jp.2015.191.
Tönz GM, Kadner A, Pfammatter JP, Agyeman PKA. Invasive bacterial and fungal infections after pediatric cardiac surgery: a single-center experience. Pediatr Infect Dis J 2021; 40(4): 310–316. https://doi.org/10.1097/INF.0000000000003005.
Brown PP, Kugelmass AD, Cohen DJ, Reynolds MR, Culler SD, Dee AD, et al. The frequency and cost of complications associated with coronary artery bypass grafting surgery: results from the United States Medicare program. Ann Thorac Surg 2008; 85(6): 1980–1986. https://doi.org/10.1016/j.athoracsur.2008.01.053.
Becerra MR, Tantaleán JA, Suárez VJ, Alvarado MC, Candela JL, Urcia FC. Epidemiologic surveillance of nosocomial infections in a Pediatric Intensive Care Unit of a developing country. BMC Pediatr 2010; 10: 66. https://doi.org/10.1186/1471-2431-10-66.
Bowman ME, Rebeyka IM, Ross DB, Quinonez LG, Forgie SE. Risk factors for surgical site infection after delayed sternal closure. Am J Infect Control 2013; 41(5): 464–465. https://doi.org/10.1016/j.ajic.2012.05.022.
El-Sahrigy SAF, Shouman MG, Ibrahim HM, Rahman AMOA, Habib SA, Khattab AA, et al. Prevalence and anti-microbial susceptibility of hospital acquired infections in two pediatric intensive care units in Egypt. Open Access Maced J Med Sci 2019; 7(11): 1744–1749. https://doi.org/10.3889/oamjms.2019.485.
Aiesh BM, Qashou R, Shemmessian G, Swaileh MW, Abutaha SA, Sabateen A, et al. Nosocomial infections in the surgical intensive care unit: an observational retrospective study from a large tertiary hospital in Palestine. BMC Infect Dis 2023; 23(1): 686. https://doi.org/10.1186/s12879-023-08677-z.
Hajidavalu FS, Sadeghizadeh A. Mortality rate and risk factors in pediatric intensive care unit of imam hossein children's hospital in isfahan: a prospective cross-sectional study. Adv Biomed Res 2023; 12: 92. https://doi.org/10.4103/abr.abr_371_21.
García H, Cervantes-Luna B, González-Cabello H, Miranda-Novales G. Risk factors for nosocomial infections after cardiac surgery in newborns with congenital heart disease. Pediatr Neonatol 2018; 59(4): 404–409. https://doi.org/10.1016/j.pedneo.2017.11.014.
Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep 2021; 48(10): 6987–6998. https://doi.org/10.1007/s11033-021-06690-6.
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, et al. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13: 1159798. https://doi.org/10.3389/fcimb.2023.1159798.
Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4): 657–686. https://doi.org/10.1128/CMR.18.4.657-686.2005.
Yang P, Chen Y, Jiang S, Shen P, Lu X, Xiao Y. Association between the rate of third generation cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae and antibiotic consumption based on 143 Chinese tertiary hospitals data in 2014. Eur J Clin Microbiol Infect Dis 2020; 39(8): 1495–1502. https://doi.org/10.1007/s10096-020-03856-1.
van der Steen M, Leenstra T, Kluytmans JA, van der Bij AK, ISIS-AR study group. Trends in expanded-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae among Dutch clinical isolates, from 2008 to 2012. PLoS One 2015; 10(9): e0138088. https://doi.org/10.1371/journal.pone.0138088.
Renggli L, Gasser M, Plüss-Suard C, Harbarth S, Kronenberg A. Temporal and structural patterns of extended-spectrum cephalosporin-resistant Klebsiella pneumoniae incidence in Swiss hospitals. J Hosp Infect 2022; 120: 36–42. https://doi.org/10.1016/j.jhin.2021.11.006.
Bassetti M, Vena A, Battaglini D, Pelosi P, Giacobbe DR. The role of new antimicrobials for Gram-negative infections in daily clinical practice. Curr Opin Infect Dis 2020; 33(6): 495–500. https://doi.org/10.1097/QCO.0000000000000686.
European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe – annual report of the European antimicrobial resistance surveillance network (EARS-Net) 2018. Publications Office of the European Union; 2019. https://doi.org/10.2900/22212.
Ma C, McClean S. Mapping global prevalence of Acinetobacter baumannii and recent vaccine development to tackle it. Vaccines (Basel) 2021; 9(6): 570. https://doi.org/10.3390/vaccines9060570.
Giammanco A, Calà C, Fasciana T, Dowzicky MJ. Global assessment of the activity of tigecycline against multidrug-resistant gram-negative pathogens between 2004 and 2014 as part of the tigecycline evaluation and surveillance trial. mSphere 2017; 2(1): e00310–e00316. https://doi.org/10.1128/mSphere.00310-16.
U.S. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. Available online at www.cdc.gov/DrugResistance/Biggest-Threats.html. https://doi.org/10.15620/cdc:82532.
Gharaibeh MH, Abandeh YM, Elnasser ZA, Lafi SQ, Obeidat HM, Khanfar MA. Multi-drug resistant Acinetobacter baumannii: phenotypic and genotypic resistance profiles and the associated risk factors in teaching hospital in Jordan. J Infect Public Health 2024; 17(4): 543–550. https://doi.org/10.1016/j.jiph.2024.01.018.
Global antimicrobial resistance and use surveillance system (GLASS) report 2022. Geneva: World Health Organization; 2022.
Nguyen M, Joshi SG. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: a scientific review. J Appl Microbiol 2021; 131(6): 2715–2738. https://doi.org/10.1111/jam.15130.
Gaur P, Hada V, Rath RS, Mohanty A, Singh P, Rukadikar A. Interpretation of antimicrobial susceptibility testing using European committee on antimicrobial susceptibility testing (EUCAST) and clinical and laboratory standards institute (CLSI) breakpoints: analysis of agreement. Cureus 2023; 15(3): e36977. https://doi.org/10.7759/cureus.36977.
Barker GM, O'Brien SM, Welke KF, Jacobs ML, Jacobs JP, Benjamin DK Jr, et al. Major infection after pediatric cardiac surgery: a risk estimation model. Ann Thorac Surg 2010; 89(3): 843–850. https://doi.org/10.1016/j.athoracsur.2009.11.048.
Jefferies JMC, Cooper T, Yam T, Clarke SC. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit – a systematic review of risk factors and environmental sources. J Med Microbiol 2012; 61(Pt8): 1052–1061. https://doi.org/10.1099/jmm.0.044818-0.
Shamalov L, Heath M, Lynch E, Green DA, Gomez-Simmonds A, Freedberg DE. Timing and clinical risk factors for early acquisition of gut pathogen colonization with multidrug resistant organisms in the intensive care unit. Gut Pathog 2024; 16(1): 10. https://doi.org/10.1186/s13099-024-00605-z.
Ning BT, Zhang CM, Liu T, Ye S, Yang ZH, Chen ZJ. Pathogenic analysis of sputum from ventilator-associated pneumonia in a pediatric intensive care unit. Exp Ther Med 2013; 5(1): 367–371. https://doi.org/10.3892/etm.2012.757.
Laya BF, Concepcion NDP, Garcia-Peña P, Naidoo J, Kritsaneepaiboon S, Lee EY. Pediatric lower respiratory tract infections: imaging guidelines and recommendations. Radiol Clin North Am 2022; 60(1): 15–40. https://doi.org/10.1016/j.rcl.2021.08.003.
Sarvikivi E, Lyytikäinen O, Nieminen H, Sairanen H, Saxén H. Nosocomial infections after pediatric cardiac surgery. Am J Infect Control 2008; 36(8): 564–569. https://doi.org/10.1016/j.ajic.2007.11.006.
Shao PL. Risk factors for nosocomial infections after cardiac surgery in newborns with congenital heart disease. Pediatr Neonatol 2018; 59(4): 327–328. https://doi.org/10.1016/j.pedneo.2018.07.009.
Wang C, Li S, Wang F, Yang J, Yan W, Gao X, et al. Nosocomial infections during extracorporeal membrane oxygenation in pediatric patients: a multicenter retrospective study. Front Pediatr 2022; 10: 873577. https://doi.org/10.3389/fped.2022.873577.
Yu X, Chen M, Liu X, Chen Y, Hao Z, Zhang H, et al. Risk factors of nosocomial infection after cardiac surgery in children with congenital heart disease. BMC Infect Dis 2020; 20(1): 64. https://doi.org/10.1186/s12879-020-4769-6.
Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Emerging infections program healthcare-associated infections and antimicrobial use prevalence survey team. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 2014; 370(13): 1198–1208. https://doi.org/10.1056/NEJMoa1306801.
Alshaya MA, Almutairi NS, Shaath GA, Aldosari RA, Alnami SK, Althubaiti A, et al. Surgical site infections following pediatric cardiac surgery in a tertiary care hospital: rate and risk factors. J Saudi Heart Assoc 2021; 33(1): 1–8. https://doi.org/10.37616/2212-5043.1234.
Elbehiry A, Marzouk E, Moussa I, Mushayt Y, Algarni AA, Alrashed OA, et al. The prevalence of multidrug-resistant Acinetobacter baumannii and its vaccination status among healthcare providers. Vaccines (Basel) 2023; 11(7): 1171. https://doi.org/10.3390/vaccines11071171.
Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-resistant Klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics (Basel) 2023; 12(2): 234. https://doi.org/10.3390/antibiotics12020234.
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37(1): 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013.
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 2020; 33(3): e00181–e00119. https://doi.org/10.1128/CMR.00181-19.
Arbune M, Gurau G, Niculet E, Iancu AV, Lupasteanu G, Fotea S, et al. Prevalence of antibiotic resistance of ESKAPE pathogens over five years in an infectious diseases hospital from South-East of Romania. Infect Drug Resist 2021; 14: 2369–2378. https://doi.org/10.2147/IDR.S312231.
Bereanu AS, Bereanu R, Mohor C, Vintilă BI, Codru IR, Olteanu C, et al. Prevalence of infections and antimicrobial resistance of ESKAPE group bacteria isolated from patients admitted to the intensive care unit of a county emergency hospital in Romania. Antibiotics (Basel) 2024; 13(5): 400. https://doi.org/10.3390/antibiotics13050400.
Llaca-Díaz JM, Mendoza-Olazarán S, Camacho-Ortiz A, Flores S, Garza-González E. One-year surveillance of ESKAPE pathogens in an intensive care unit of Monterrey, Mexico. Chemotherapy 2012; 58(6): 475–81. https://doi.org/10.1159/000346352.
Fu P, Xu H, Jing C, Deng J, Wang H, Hua C, et al. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020. Microbiol Spectr 2021; 9(3): e0028321. https://doi.org/10.1128/Spectrum.00283-21.
Luo Q, Lu P, Chen Y, Shen P, Zheng B, Ji J, et al. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024; 13(1): 2317915. https://doi.org/10.1080/22221751.2024.2317915.
Bissenova N, Yergaliyeva A. Patterns of antimicrobial resistance in a pediatric cardiac intensive care unit: 5 years ' experience. J Microbiol Infect Dis 2017; 7(3): 132–138. https://doi.org/10.5799/jmid.367532.
Appaneal HJ, O'Neill E, Lopes VV, LaPlante KL, Caffrey AR. National trends in hospital, long-term care and outpatient Acinetobacter baumannii resistance rates. J Med Microbiol 2021; 70(12). https://doi.org/10.1099/jmm.0.001473.
Silvetti S, Ranucci M, Isgrò G, Villa V, Costa E. Preoperative colonization in pediatric cardiac surgery and its impact on postoperative infections. Paediatr Anaesth 2017; 27(8): 849–855. https://doi.org/10.1111/pan.13169.
Marra AR, Edmond MB, Schweizer ML, Ryan GW, Diekema DJ. Discontinuing contact precautions for multidrug-resistant organisms: a systematic literature review and meta-analysis. Am J Infect Control 2018; 46(3): 333–340. https://doi.org/10.1016/j.ajic.2017.08.031.
Goto M, Harris AD, Perencevich EN. Contact precautions and methicillin-resistant Staphylococcus aureus-modeling our way to safety. JAMA Netw Open 2021; 4(3): e211574. https://doi.org/10.1001/jamanetworkopen.2021.1574.
Most ZM, Phillips B, Sebert ME. Discontinuation of contact precautions for methicillin-resistant Staphylococcus aureus in a pediatric healthcare system. J Pediatr Infect Dis Soc 2024; 13(2): 123–128. https://doi.org/10.1093/jpids/piae001.
Costantini ST, Lach D, Goldfarb J, Stewart RD, Foster CB. Staphylococcus aureus colonization in children undergoing heart surgery. World J Pediatr Congenit Heart Surg 2013; 4(3): 267–270. https://doi.org/10.1177/2150135113480530.
Taylor RS, Shekerdemian LS. Avoidance of hospital-acquired infections in pediatric cardiac surgical patients. Pediatr Crit Care Med 2016; 17(8 Suppl 1): S279–S286. https://doi.org/10.1097/PCC.0000000000000758.