Authors:
Abay Baigenzhin JSC National Scientific Medical Center, Microbiology Laboratory, 42 Abylai Khan Ave., Astana, Kazakhstan

Search for other papers by Abay Baigenzhin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7703-5004
,
Nelya Bissenova JSC National Scientific Medical Center, Microbiology Laboratory, 42 Abylai Khan Ave., Astana, Kazakhstan

Search for other papers by Nelya Bissenova in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7282-7208
,
Aigerim Yergaliyeva JSC National Scientific Medical Center, Microbiology Laboratory, 42 Abylai Khan Ave., Astana, Kazakhstan

Search for other papers by Aigerim Yergaliyeva in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0000-5333-6606
,
Shukhrat Marassulov JSC National Scientific Medical Center, Microbiology Laboratory, 42 Abylai Khan Ave., Astana, Kazakhstan

Search for other papers by Shukhrat Marassulov in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0434-6602
,
Elmira Tuleubayeva JSC National Scientific Medical Center, Microbiology Laboratory, 42 Abylai Khan Ave., Astana, Kazakhstan

Search for other papers by Elmira Tuleubayeva in
Current site
Google Scholar
PubMed
Close
, and
Ulzhan Aitysheva JSC National Scientific Medical Center, Microbiology Laboratory, 42 Abylai Khan Ave., Astana, Kazakhstan

Search for other papers by Ulzhan Aitysheva in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hospital acquired infections greatly affect recovery and survival in pediatric surgical patients. We evaluated prevalence and antimicrobial resistance of ESKAPE pathogens in neonates and infants subjected to cardiac surgery in a tertiary hospital in Central Kazakhstan between 2019 and 2023 (2,278 patients) using routine methods of microbiological detection. ESKAPE pathogens were found in 1,899 out of 2,957 samples (Staphylococcus aureus – 35.3%, Klebsiella pneumoniae – 27.8%, Acinetobacter baumannii – 14.5%, Pseudomonas aeruginosa – 12.4%, Enterobacter sp. – 8.8%, Enterococcus faecium – 1.2%). The total prevalence of ESKAPE increased significantly from 45.1 to 76.9% (P = 0.005) during the study period. The resistance significantly increased in methicillin-resistant S. aureus (MRSA, from 13.7 to 41.9%, P = 0.041) but decreased in carbapenem-resistant P. aeruginosa (from 64.3 to 37.7%, P = 0.037) and carbapenem-resistant A. baumannii (from 48.5 to 19.1%, P = 0.039). Gradual but non-significant changes were shown in third-generation cephalosporin resistant K. pneumoniae (from 63.6 to 45.2%) and carbapenem-resistant K. pneumoniae (from 0 to 8.3%). The relative prevalence of ESKAPE pathogens steadily increased in our pediatric cardiac surgery patients in 2019–2023. The most frequent were S. aureus, K. pneumoniae, and A. baumannii, with dramatically increasing tendencies for MRSA. Our results highlight the necessity for a well-designed infection control strategy and constant microbiological monitoring in pediatric cardiac surgery departments.

  • 1.

    Nelson-McMillan K, Hornik CP, He X, Vricella LA, Jacobs JP, Hill KD, et al. Delayed sternal closure in infant heart surgery-the importance of where and when: an analysis of the STS congenital heart surgery database. Ann Thorac Surg 2016; 102(5): 15651572. https://doi.org/10.1016/j.athoracsur.2016.08.081.

    • Search Google Scholar
    • Export Citation
  • 2.

    Prasad PA, Wong-McLoughlin J, Patel S, Coffin SE, Zaoutis TE, Perlman J, et al. Surgical site infections in a longitudinal cohort of neonatal intensive care unit patients. J Perinatol 2016; 36(4): 300305. https://doi.org/10.1038/jp.2015.191.

    • Search Google Scholar
    • Export Citation
  • 3.

    Tönz GM, Kadner A, Pfammatter JP, Agyeman PKA. Invasive bacterial and fungal infections after pediatric cardiac surgery: a single-center experience. Pediatr Infect Dis J 2021; 40(4): 310316. https://doi.org/10.1097/INF.0000000000003005.

    • Search Google Scholar
    • Export Citation
  • 4.

    Brown PP, Kugelmass AD, Cohen DJ, Reynolds MR, Culler SD, Dee AD, et al. The frequency and cost of complications associated with coronary artery bypass grafting surgery: results from the United States Medicare program. Ann Thorac Surg 2008; 85(6): 19801986. https://doi.org/10.1016/j.athoracsur.2008.01.053.

    • Search Google Scholar
    • Export Citation
  • 5.

    Becerra MR, Tantaleán JA, Suárez VJ, Alvarado MC, Candela JL, Urcia FC. Epidemiologic surveillance of nosocomial infections in a Pediatric Intensive Care Unit of a developing country. BMC Pediatr 2010; 10: 66. https://doi.org/10.1186/1471-2431-10-66.

    • Search Google Scholar
    • Export Citation
  • 6.

    Bowman ME, Rebeyka IM, Ross DB, Quinonez LG, Forgie SE. Risk factors for surgical site infection after delayed sternal closure. Am J Infect Control 2013; 41(5): 464465. https://doi.org/10.1016/j.ajic.2012.05.022.

    • Search Google Scholar
    • Export Citation
  • 7.

    El-Sahrigy SAF, Shouman MG, Ibrahim HM, Rahman AMOA, Habib SA, Khattab AA, et al. Prevalence and anti-microbial susceptibility of hospital acquired infections in two pediatric intensive care units in Egypt. Open Access Maced J Med Sci 2019; 7(11): 17441749. https://doi.org/10.3889/oamjms.2019.485.

    • Search Google Scholar
    • Export Citation
  • 8.

    Aiesh BM, Qashou R, Shemmessian G, Swaileh MW, Abutaha SA, Sabateen A, et al. Nosocomial infections in the surgical intensive care unit: an observational retrospective study from a large tertiary hospital in Palestine. BMC Infect Dis 2023; 23(1): 686. https://doi.org/10.1186/s12879-023-08677-z.

    • Search Google Scholar
    • Export Citation
  • 9.

    Hajidavalu FS, Sadeghizadeh A. Mortality rate and risk factors in pediatric intensive care unit of imam hossein children's hospital in isfahan: a prospective cross-sectional study. Adv Biomed Res 2023; 12: 92. https://doi.org/10.4103/abr.abr_371_21.

    • Search Google Scholar
    • Export Citation
  • 10.

    García H, Cervantes-Luna B, González-Cabello H, Miranda-Novales G. Risk factors for nosocomial infections after cardiac surgery in newborns with congenital heart disease. Pediatr Neonatol 2018; 59(4): 404409. https://doi.org/10.1016/j.pedneo.2017.11.014.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep 2021; 48(10): 69876998. https://doi.org/10.1007/s11033-021-06690-6.

    • Search Google Scholar
    • Export Citation
  • 12.

    Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, et al. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13: 1159798. https://doi.org/10.3389/fcimb.2023.1159798.

    • Search Google Scholar
    • Export Citation
  • 13.

    Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4): 657686. https://doi.org/10.1128/CMR.18.4.657-686.2005.

    • Search Google Scholar
    • Export Citation
  • 14.

    Yang P, Chen Y, Jiang S, Shen P, Lu X, Xiao Y. Association between the rate of third generation cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae and antibiotic consumption based on 143 Chinese tertiary hospitals data in 2014. Eur J Clin Microbiol Infect Dis 2020; 39(8): 14951502. https://doi.org/10.1007/s10096-020-03856-1.

    • Search Google Scholar
    • Export Citation
  • 15.

    van der Steen M, Leenstra T, Kluytmans JA, van der Bij AK, ISIS-AR study group. Trends in expanded-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae among Dutch clinical isolates, from 2008 to 2012. PLoS One 2015; 10(9): e0138088. https://doi.org/10.1371/journal.pone.0138088.

    • Search Google Scholar
    • Export Citation
  • 16.

    Renggli L, Gasser M, Plüss-Suard C, Harbarth S, Kronenberg A. Temporal and structural patterns of extended-spectrum cephalosporin-resistant Klebsiella pneumoniae incidence in Swiss hospitals. J Hosp Infect 2022; 120: 3642. https://doi.org/10.1016/j.jhin.2021.11.006.

    • Search Google Scholar
    • Export Citation
  • 17.

    Bassetti M, Vena A, Battaglini D, Pelosi P, Giacobbe DR. The role of new antimicrobials for Gram-negative infections in daily clinical practice. Curr Opin Infect Dis 2020; 33(6): 495500. https://doi.org/10.1097/QCO.0000000000000686.

    • Search Google Scholar
    • Export Citation
  • 18.

    European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe – annual report of the European antimicrobial resistance surveillance network (EARS-Net) 2018. Publications Office of the European Union; 2019. https://doi.org/10.2900/22212.

    • Search Google Scholar
    • Export Citation
  • 19.

    Ma C, McClean S. Mapping global prevalence of Acinetobacter baumannii and recent vaccine development to tackle it. Vaccines (Basel) 2021; 9(6): 570. https://doi.org/10.3390/vaccines9060570.

    • Search Google Scholar
    • Export Citation
  • 20.

    Giammanco A, Calà C, Fasciana T, Dowzicky MJ. Global assessment of the activity of tigecycline against multidrug-resistant gram-negative pathogens between 2004 and 2014 as part of the tigecycline evaluation and surveillance trial. mSphere 2017; 2(1): e00310e00316. https://doi.org/10.1128/mSphere.00310-16.

    • Search Google Scholar
    • Export Citation
  • 21.

    U.S. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. Available online at www.cdc.gov/DrugResistance/Biggest-Threats.html. https://doi.org/10.15620/cdc:82532.

    • Search Google Scholar
    • Export Citation
  • 22.

    Gharaibeh MH, Abandeh YM, Elnasser ZA, Lafi SQ, Obeidat HM, Khanfar MA. Multi-drug resistant Acinetobacter baumannii: phenotypic and genotypic resistance profiles and the associated risk factors in teaching hospital in Jordan. J Infect Public Health 2024; 17(4): 543550. https://doi.org/10.1016/j.jiph.2024.01.018.

    • Search Google Scholar
    • Export Citation
  • 23.

    Global antimicrobial resistance and use surveillance system (GLASS) report 2022. Geneva: World Health Organization; 2022.

  • 24.

    Nguyen M, Joshi SG. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: a scientific review. J Appl Microbiol 2021; 131(6): 27152738. https://doi.org/10.1111/jam.15130.

    • Search Google Scholar
    • Export Citation
  • 25.

    Gaur P, Hada V, Rath RS, Mohanty A, Singh P, Rukadikar A. Interpretation of antimicrobial susceptibility testing using European committee on antimicrobial susceptibility testing (EUCAST) and clinical and laboratory standards institute (CLSI) breakpoints: analysis of agreement. Cureus 2023; 15(3): e36977. https://doi.org/10.7759/cureus.36977.

    • Search Google Scholar
    • Export Citation
  • 26.

    Barker GM, O'Brien SM, Welke KF, Jacobs ML, Jacobs JP, Benjamin DK Jr, et al. Major infection after pediatric cardiac surgery: a risk estimation model. Ann Thorac Surg 2010; 89(3): 843850. https://doi.org/10.1016/j.athoracsur.2009.11.048.

    • Search Google Scholar
    • Export Citation
  • 27.

    Jefferies JMC, Cooper T, Yam T, Clarke SC. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit – a systematic review of risk factors and environmental sources. J Med Microbiol 2012; 61(Pt8): 10521061. https://doi.org/10.1099/jmm.0.044818-0.

    • Search Google Scholar
    • Export Citation
  • 28.

    Shamalov L, Heath M, Lynch E, Green DA, Gomez-Simmonds A, Freedberg DE. Timing and clinical risk factors for early acquisition of gut pathogen colonization with multidrug resistant organisms in the intensive care unit. Gut Pathog 2024; 16(1): 10. https://doi.org/10.1186/s13099-024-00605-z.

    • Search Google Scholar
    • Export Citation
  • 29.

    Ning BT, Zhang CM, Liu T, Ye S, Yang ZH, Chen ZJ. Pathogenic analysis of sputum from ventilator-associated pneumonia in a pediatric intensive care unit. Exp Ther Med 2013; 5(1): 367371. https://doi.org/10.3892/etm.2012.757.

    • Search Google Scholar
    • Export Citation
  • 30.

    Laya BF, Concepcion NDP, Garcia-Peña P, Naidoo J, Kritsaneepaiboon S, Lee EY. Pediatric lower respiratory tract infections: imaging guidelines and recommendations. Radiol Clin North Am 2022; 60(1): 1540. https://doi.org/10.1016/j.rcl.2021.08.003.

    • Search Google Scholar
    • Export Citation
  • 31.

    Sarvikivi E, Lyytikäinen O, Nieminen H, Sairanen H, Saxén H. Nosocomial infections after pediatric cardiac surgery. Am J Infect Control 2008; 36(8): 564569. https://doi.org/10.1016/j.ajic.2007.11.006.

    • Search Google Scholar
    • Export Citation
  • 32.

    Shao PL. Risk factors for nosocomial infections after cardiac surgery in newborns with congenital heart disease. Pediatr Neonatol 2018; 59(4): 327328. https://doi.org/10.1016/j.pedneo.2018.07.009.

    • Search Google Scholar
    • Export Citation
  • 33.

    Wang C, Li S, Wang F, Yang J, Yan W, Gao X, et al. Nosocomial infections during extracorporeal membrane oxygenation in pediatric patients: a multicenter retrospective study. Front Pediatr 2022; 10: 873577. https://doi.org/10.3389/fped.2022.873577.

    • Search Google Scholar
    • Export Citation
  • 34.

    Yu X, Chen M, Liu X, Chen Y, Hao Z, Zhang H, et al. Risk factors of nosocomial infection after cardiac surgery in children with congenital heart disease. BMC Infect Dis 2020; 20(1): 64. https://doi.org/10.1186/s12879-020-4769-6.

    • Search Google Scholar
    • Export Citation
  • 35.

    Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Emerging infections program healthcare-associated infections and antimicrobial use prevalence survey team. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 2014; 370(13): 11981208. https://doi.org/10.1056/NEJMoa1306801.

    • Search Google Scholar
    • Export Citation
  • 36.

    Alshaya MA, Almutairi NS, Shaath GA, Aldosari RA, Alnami SK, Althubaiti A, et al. Surgical site infections following pediatric cardiac surgery in a tertiary care hospital: rate and risk factors. J Saudi Heart Assoc 2021; 33(1): 18. https://doi.org/10.37616/2212-5043.1234.

    • Search Google Scholar
    • Export Citation
  • 37.

    Elbehiry A, Marzouk E, Moussa I, Mushayt Y, Algarni AA, Alrashed OA, et al. The prevalence of multidrug-resistant Acinetobacter baumannii and its vaccination status among healthcare providers. Vaccines (Basel) 2023; 11(7): 1171. https://doi.org/10.3390/vaccines11071171.

    • Search Google Scholar
    • Export Citation
  • 38.

    Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-resistant Klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics (Basel) 2023; 12(2): 234. https://doi.org/10.3390/antibiotics12020234.

    • Search Google Scholar
    • Export Citation
  • 39.

    Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37(1): 177192. https://doi.org/10.1016/j.biotechadv.2018.11.013.

    • Search Google Scholar
    • Export Citation
  • 40.

    De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 2020; 33(3): e00181e00119. https://doi.org/10.1128/CMR.00181-19.

    • Search Google Scholar
    • Export Citation
  • 41.

    Arbune M, Gurau G, Niculet E, Iancu AV, Lupasteanu G, Fotea S, et al. Prevalence of antibiotic resistance of ESKAPE pathogens over five years in an infectious diseases hospital from South-East of Romania. Infect Drug Resist 2021; 14: 23692378. https://doi.org/10.2147/IDR.S312231.

    • Search Google Scholar
    • Export Citation
  • 42.

    Bereanu AS, Bereanu R, Mohor C, Vintilă BI, Codru IR, Olteanu C, et al. Prevalence of infections and antimicrobial resistance of ESKAPE group bacteria isolated from patients admitted to the intensive care unit of a county emergency hospital in Romania. Antibiotics (Basel) 2024; 13(5): 400. https://doi.org/10.3390/antibiotics13050400.

    • Search Google Scholar
    • Export Citation
  • 43.

    Llaca-Díaz JM, Mendoza-Olazarán S, Camacho-Ortiz A, Flores S, Garza-González E. One-year surveillance of ESKAPE pathogens in an intensive care unit of Monterrey, Mexico. Chemotherapy 2012; 58(6): 47581. https://doi.org/10.1159/000346352.

    • Search Google Scholar
    • Export Citation
  • 44.

    Fu P, Xu H, Jing C, Deng J, Wang H, Hua C, et al. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020. Microbiol Spectr 2021; 9(3): e0028321. https://doi.org/10.1128/Spectrum.00283-21.

    • Search Google Scholar
    • Export Citation
  • 45.

    Luo Q, Lu P, Chen Y, Shen P, Zheng B, Ji J, et al. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024; 13(1): 2317915. https://doi.org/10.1080/22221751.2024.2317915.

    • Search Google Scholar
    • Export Citation
  • 46.

    Bissenova N, Yergaliyeva A. Patterns of antimicrobial resistance in a pediatric cardiac intensive care unit: 5 years ' experience. J Microbiol Infect Dis 2017; 7(3): 132138. https://doi.org/10.5799/jmid.367532.

    • Search Google Scholar
    • Export Citation
  • 47.

    Appaneal HJ, O'Neill E, Lopes VV, LaPlante KL, Caffrey AR. National trends in hospital, long-term care and outpatient Acinetobacter baumannii resistance rates. J Med Microbiol 2021; 70(12). https://doi.org/10.1099/jmm.0.001473.

    • Search Google Scholar
    • Export Citation
  • 48.

    Silvetti S, Ranucci M, Isgrò G, Villa V, Costa E. Preoperative colonization in pediatric cardiac surgery and its impact on postoperative infections. Paediatr Anaesth 2017; 27(8): 849855. https://doi.org/10.1111/pan.13169.

    • Search Google Scholar
    • Export Citation
  • 49.

    Marra AR, Edmond MB, Schweizer ML, Ryan GW, Diekema DJ. Discontinuing contact precautions for multidrug-resistant organisms: a systematic literature review and meta-analysis. Am J Infect Control 2018; 46(3): 333340. https://doi.org/10.1016/j.ajic.2017.08.031.

    • Search Google Scholar
    • Export Citation
  • 50.

    Goto M, Harris AD, Perencevich EN. Contact precautions and methicillin-resistant Staphylococcus aureus-modeling our way to safety. JAMA Netw Open 2021; 4(3): e211574. https://doi.org/10.1001/jamanetworkopen.2021.1574.

    • Search Google Scholar
    • Export Citation
  • 51.

    Most ZM, Phillips B, Sebert ME. Discontinuation of contact precautions for methicillin-resistant Staphylococcus aureus in a pediatric healthcare system. J Pediatr Infect Dis Soc 2024; 13(2): 123128. https://doi.org/10.1093/jpids/piae001.

    • Search Google Scholar
    • Export Citation
  • 52.

    Costantini ST, Lach D, Goldfarb J, Stewart RD, Foster CB. Staphylococcus aureus colonization in children undergoing heart surgery. World J Pediatr Congenit Heart Surg 2013; 4(3): 267270. https://doi.org/10.1177/2150135113480530.

    • Search Google Scholar
    • Export Citation
  • 53.

    Taylor RS, Shekerdemian LS. Avoidance of hospital-acquired infections in pediatric cardiac surgical patients. Pediatr Crit Care Med 2016; 17(8 Suppl 1): S279S286. https://doi.org/10.1097/PCC.0000000000000758.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 0 0 0
Jul 2024 0 0 0
Aug 2024 99 7 4
Sep 2024 364 5 7
Oct 2024 389 3 5
Nov 2024 151 0 0
Dec 2024 10 0 0