Authors:
José Antonio Mandujano-Hernández Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by José Antonio Mandujano-Hernández in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8060-4872
,
José Vázquez-Villanueva Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd. Victoria C.P. 87274, Mexico

Search for other papers by José Vázquez-Villanueva in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5414-2694
,
Erick de Jesús De Luna-Santillana Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by Erick de Jesús De Luna-Santillana in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1257-5832
,
Gildardo Rivera Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by Gildardo Rivera in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9842-4167
,
Virgilio Bocanegra-García Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by Virgilio Bocanegra-García in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0728-2018
, and
Ana Verónica Martínez-Vázquez Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by Ana Verónica Martínez-Vázquez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6144-5439
Restricted access

Abstract

Antibiotic resistance constitutes a significant public health challenge, with diverse reservoirs of resistant bacteria playing pivotal roles in their dissemination. Among these reservoirs, pets are carrying antibiotic-resistant strains. The objective of this study was to assess the resistance profiles of Escherichia coli, and the prevalence of extended-spectrum β-lactamase (ESBL) producing E. coli strains in dogs and cats from Tamaulipas, Mexico. A total of 300 stool samples (150 dogs and 150 cats) from healthy pets were subjected to analysis. Antibiotic susceptibility testing and the identification of ESBLs were carried out by disc diffusion method. The presence of resistance genes, class 1, 2, and 3 integrons (intI1, intI2, and intI3) and phylogroups was determined by PCR analysis. The findings reveal that 42.6% (128/300) of the strains exhibited resistance to at least one of the eight antibiotics assessed, and 18.6% (56/300) demonstrated multidrug resistance (MDR), that distributed across 69 distinct resistance patterns. Altogether 2.6% of E. coli strains (8/300) were confirmed as TEM and CTX-M type ESBL producers. These outcomes underscore the roles of dogs and cats in Tamaulipas as reservoirs for the dissemination of MDR and/or ESBL strains. The results underscore the necessity for conducting prevalence studies on ESBL-producing E. coli, forming a foundation for comprehending the present scenario and formulating strategies for the control and mitigation of this issue.

  • 1.

    Miranda C, Silva V, Igrejas G, Poeta P. Impact of European pet antibiotic use on Enterococci and Staphylococci antimicrobial resistance and human health. Future Microbiol 2021; 16(3): 185201.

    • Search Google Scholar
    • Export Citation
  • 2.

    Ghimpețeanu OM, Pogurschi EN, Popa DC, Dragomir N, Drăgotoiu T, Mihai OD, et al. Antibiotic use in livestock and residues in food—a public health threat: a review. Foods 2022; 11(10): 1430.

    • Search Google Scholar
    • Export Citation
  • 3.

    WHO. Global antimicrobial resistance and use surveillance system (GLASS) report. Geneva, Switzerland; 2022. Available from: https://www.who.int/publications/i/item/9789240062702, Accessed 10 November 2023.

    • Search Google Scholar
    • Export Citation
  • 4.

    Walsh TR, Gales AC, Laxminarayan R, Dodd PC. Antimicrobial resistance: addressing a global threat to humanity. Plos Med 2023; 20(7): e1004264.

    • Search Google Scholar
    • Export Citation
  • 5.

    Pormohammad A, Nasiri MJ, Azimi T. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infect Drug Resist 2019; 12: 11811197.

    • Search Google Scholar
    • Export Citation
  • 6.

    Oh SS, Song J, Kim J, Shin J. Increasing prevalence of multidrug-resistant mcr-1-positive Escherichia coli isolates from fresh vegetables and healthy food animals in South Korea. Int J Infect Dis 2020; 92: 5355.

    • Search Google Scholar
    • Export Citation
  • 7.

    Wang H, Qi JF, Qin R, Ding K, Graham DW, Zhu Y. Intensified livestock farming increases antibiotic resistance genotypes and phenotypes in animal feces. Commun Earth Environ 2023; 4(123).

    • Search Google Scholar
    • Export Citation
  • 8.

    Treskova M, Kuhlmann A, Freise F, Kreienbrock L, Brogden S. Occurrence of antimicrobial resistance in the environment in Germany, Austria, and Switzerland: a narrative review of existing evidence. Microorganisms 2022; 10(4): 728.

    • Search Google Scholar
    • Export Citation
  • 9.

    Xiao R, Huang D, Du L, Song B, Yin L, Chen Y, et al. Antibiotic resistance in soil-plant systems: a review of the source, dissemination, influence factors, and potential exposure risks. Sci Total Environ 2023; 869: 161855.

    • Search Google Scholar
    • Export Citation
  • 10.

    Wu J, Wang J, Li Z, Guo S, Li K, Xu P, et al. Antibiotics and antibiotic resistance genes in agricultural soils: a systematic analysis. Crit Rev Environ Sci Technol 2023; 57(7): 847864.

    • Search Google Scholar
    • Export Citation
  • 11.

    Arsand JB, Hoff RB, Jank L, Bussamara R, Dallegrave A, Bento FM, et al. Presence of antibiotic resistance genes and its association with antibiotic occurrence in Dilúvio River in southern Brazil. Sci Total Environ 2020; 738: 139781.

    • Search Google Scholar
    • Export Citation
  • 12.

    Grenni P. Antimicrobial resistance in rivers: a review of the genes detected and new challenges. Environ Toxicol Chem 2022; 41(3): 687714.

    • Search Google Scholar
    • Export Citation
  • 13.

    Morina JC, Franklin RB. Drivers of antibiotic resistance gene abundance in an urban river. Antibiotics (Bases) 2023; 12(8): 1270.

  • 14.

    Ramadan H, Jackson CR, Frye JG, Hiott LM, Samir M, Awad A, et al. Antimicrobial resistance, genetic diversity and multilocus sequence typing of Escherichia coli from humans, retail chicken and ground beef in Egypt. Pathogens 2020; 9(5): 357.

    • Search Google Scholar
    • Export Citation
  • 15.

    Brunn A, Kadri-Alabi Z, Moodley A, Guardabassi L, Taylor P, Mateus A, et al. Characteristics and global occurrence of human pathogens harboring antimicrobial resistance in food crops: a scoping review. Front Sustain Food Syst 2022; 6: 824714.

    • Search Google Scholar
    • Export Citation
  • 16.

    Rega M, Andriani L, Poeta A, Bonardi S, Conter M, Bacci C. The pork food chain as a route of transmission of antimicrobial resistant Escherichia coli: a farm-to-fork perspective. Antibiotics (Basel) 2023; 12(2): 376.

    • Search Google Scholar
    • Export Citation
  • 17.

    Bhat AH. Bacterial zoonoses transmitted by household pets and as reservoirs of antimicrobial resistant bacteria. Microb Pathog 2021; 155: 104891.

    • Search Google Scholar
    • Export Citation
  • 18.

    Marchetti L, Buldain D, Gortari L, Buchamer A, Chirino M, Mestorino N. Pet and stray dogs as reservoirs of antimicrobial-resistant Escherichia coli. Int J Microbiol 2021: 6664557.

    • Search Google Scholar
    • Export Citation
  • 19.

    Dróżdż M, Małaszczuk M, Paluch E, Pawlak A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect Ecol Epidemiol 2021; 11(1): 1975530.

    • Search Google Scholar
    • Export Citation
  • 20.

    Melo LC, Oresco C, Leigue L, Netto HM, Melville PA, Benites PA, et al. Prevalence and molecular features of ESBL/pAmpC-producing Enterobacteriaceae in healthy and diseased companion animals in Brazil. Vet Microbiol 2018; 221: 5966.

    • Search Google Scholar
    • Export Citation
  • 21.

    Dupouy V, Abdelli M, Moyano G, Arpaillange N, Bibbal D, Cadiergues MC, et al. Prevalence of beta-lactam and quinolone/fluoroquinolone resistance in Enterobacteriaceae from dogs in France and Spain-characterization of ESBL/pAmpC isolates, genes, and conjugative plasmids. Front Vet Sci 2019; 6: 279.

    • Search Google Scholar
    • Export Citation
  • 22.

    Wang Y, Zhou J, Li X, Ma L, Cao X, Hu W, et al. Genetic diversity, antimicrobial resistance and extended-spectrum β-lactamase type of Escherichia coli isolates from chicken, dog, pig and yak in Gansu and Qinghai Provinces, China. J Glob Antimicrob Resist 2020; 22: 726732.

    • Search Google Scholar
    • Export Citation
  • 23.

    Takagi H, Yamane K, Matsui M, Suzuki S, Ito K. Pathotypes and drug susceptibility of Escherichia coli isolated from companion dogs in Japan. Jpn J Infect Dis 2020; 73(3): 253522.

    • Search Google Scholar
    • Export Citation
  • 24.

    Aurich S, Prenger-Berninghoff E, Ewers C. Prevalence and antimicrobial resistance of bacterial uropathogens isolated from dogs and cats. Antibiotics (Basel) 2022; 11(12): 1730.

    • Search Google Scholar
    • Export Citation
  • 25.

    Sun L, Meng N, Wang Z, Hong J, Dai Y, Wang Z, et al. Genomic characterization of ESBL/AmpC-producing Escherichia coli in stray dogs sheltered in Yangzhou, China. Infect Drug Resist 2022; 15: 77417750.

    • Search Google Scholar
    • Export Citation
  • 26.

    Haulisah NA, Hassan L, Jajere SM, Ahmad NI, Bejo SK. High prevalence of antimicrobial resistance and multidrug resistance among bacterial isolates from diseased pets: retrospective laboratory data (2015–2017). PLoS One 2022; 17(12): e0277664.

    • Search Google Scholar
    • Export Citation
  • 27.

    Fayez M, Elmoslemany A, Al Romaihi AA, Azzawi AY, Almubarak A, Elsohaby I. Prevalence and risk factors associated with multidrug resistance and extended-spectrum b-lactamase producing E. coli isolated from healthy and diseased cats. Antibiotics (Basel) 2023; 12(2): 229.

    • Search Google Scholar
    • Export Citation
  • 28.

    Yasugi M, Hatoya S, Motooka D, Kondo D, Akiyoshi H, Horie M, et al. Genetic and phenotypic analyses of mcr-harboring extended-spectrum β-lactamase-producing Escherichia coli isolates from companion dogs and cats in Japan. Vet Microbiol 2023; 280: 109695.

    • Search Google Scholar
    • Export Citation
  • 29.

    Ramos S, Silva V, Dapkevicius MLE, Caniça M, Tejedor-Junco MT, Igrejas G, et al. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: health implications of extended spectrum β-lactamase (ESBL) production. Animals (Basel) 2020; 10(12): 2239.

    • Search Google Scholar
    • Export Citation
  • 30.

    Nyirabahizi E, Tyson GH, Dessai U, Zhao S, Kabera C, Crarey E, et al. Evaluation of Escherichia coli as an indicator for antimicrobial resistance in Salmonella recovered from the same food or animal ceca samples. Food Control 2020; 115: 107280.

    • Search Google Scholar
    • Export Citation
  • 31.

    Zhang H, Xu J, Xiao O, Wang Y, Wang J, Zhu M, et al. Carbapenem-sparing beta-lactam/beta-lactamase inhibitors versus carbapenems for bloodstream infections caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: a systematic review and meta-analysis. Int J Inf Dis 2023; 128: 194204.

    • Search Google Scholar
    • Export Citation
  • 32.

    Ortega-Paredes D, Haro M, Leoro-Garzón P, Barba P, Loaiza K, Mora F, et al. Multidrug-resistant Escherichia coli isolated from canine faeces in a public park in Quito, Ecuador. J Glob Antimicrob Resist 2019; 18: 263268.

    • Search Google Scholar
    • Export Citation
  • 33.

    Salgado-Caxito M, Benavides JA, Adell AD, Paes AC, Moreno-Switt AI. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats – a scoping review and meta-analysis. One Health 2021; 12: 100236.

    • Search Google Scholar
    • Export Citation
  • 34.

    Derakhshandeh A, Eraghi V, Boroojeni AM, Niaki MA, Zare S, Naziri Z. Virulence factors, antibiotic resistance genes and genetic relatedness of commensal Escherichia coli isolates from dogs and their owners. Microb Pathog 2018; 116: 241245.

    • Search Google Scholar
    • Export Citation
  • 35.

    Rocha-Gracia RC, Cortés-Cortés G, Lozano-Zarain P, Bello F, Martínez-Laguna Y, Torres C. Faecal Escherichia coli isolates from healthy dogs harbour CTX-M-15 and CMY-2 β-lactamases. Vet J 2015; 203(3): 315319.

    • Search Google Scholar
    • Export Citation
  • 36.

    Galindo M. Reservoirs of CTX-M extended spectrum β-lactamase-producing Enterobacteriaceae in Oaxaca, Mexico. J Microbiol Exp 2019; 7(1): 4347.

    • Search Google Scholar
    • Export Citation
  • 37.

    Vogel RF, Entian KD, Mecke D. Cloning and sequence of the mdh structural gene of Escherichia coli coding for malate dehydrogenase. Arch Microbiol 1987; 149(1): 3642.

    • Search Google Scholar
    • Export Citation
  • 38.

    Vázquez-Villanueva J, Vázquez K, Martínez-Vázquez AV, Wong A, Hernández J, Cabrero-Martínez O, et al. Molecular and antimicrobial susceptibility characterization of Escherichia coli isolates from bovine slaughterhouse process. Antibiotics (Basel, Switzerland) 2023; 12(2): 291.

    • Search Google Scholar
    • Export Citation
  • 39.

    CLSI. Performance standards for antimicrobial susceptibility testing, 31st ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2021. Available from: https://www.standards-global.com/wp-content/uploads/pdfs/preview/2247002.

    • Search Google Scholar
    • Export Citation
  • 40.

    Ng LK, Martin I, Alfa M, Mulvey M. Multiplex PCR for the detection of tetracycline-resistant genes. Mol Cell Probes 2001; 15(4): 209215.

    • Search Google Scholar
    • Export Citation
  • 41.

    Kozak GK, Boerlin P, Janecko N, Reid-Smith RJ, Jardine C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and natural environments in Ontario, Canada. Appl Environ Microbiol 2009; 75(3): 55966.

    • Search Google Scholar
    • Export Citation
  • 42.

    Kargar M, Mohammadalipour Z, Doosti A, Lorzadeh S, Japoni-Nejad A. High prevalence of class 1 to 3 integrons among multidrug-resistant diarrheagenic Escherichia coli in Sothwest of Iran. Osong Public Health Res Perspect 2014; 5(4): 193198.

    • Search Google Scholar
    • Export Citation
  • 43.

    EUCAST. The European committee on antimicrobial susceptibility testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0; 2021.

    • Search Google Scholar
    • Export Citation
  • 44.

    Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000; 66(10): 45558.

    • Search Google Scholar
    • Export Citation
  • 45.

    Hong JS, Song W, Park HM, Oh JY, Chae JC, Jeong S, et al. Molecular characterization of fecal extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli from healthy companion animals and cohabiting humans in South Korea. Front Microbiol 2020; 11: 674.

    • Search Google Scholar
    • Export Citation
  • 46.

    Zhou Y, Ji X, Liang B, Jiang B, Li Y, Yuan T, et al. Antimicrobial resistance and prevalence of extended spectrum-lactamase-producing Escherichia coli from dogs and cats in northeastern China from 2012 to 2021. Antibiotics (Basel) 2022; 11(11): 1506.

    • Search Google Scholar
    • Export Citation
  • 47.

    Joosten P, Ceccarelli D, Odent E, Sarrazin S, Graveland H, Van Compel L, et al. Antimicrobial usage and resistance in companion animals: a cross-sectional study in three European countries. Antibiotics (Basel) 2020; 9(2): 116.

    • Search Google Scholar
    • Export Citation
  • 48.

    Flament-Simon SC, De Toro M, García V, Blanco JE, Blanco M, Alonso MP, et al. Molecular characteristics of extraintestinal pathogenic E. coli (ExPEC), uropathogenic E. coli (UPEC), and multidrug resistant Escherichia coli isolated from healthy dogs in Spain. Whole genome sequencing of canine ST372 isolates and comparison with human isolates causing extraintestinal infections. Microorganisms 2020; 8(11): 1712.

    • Search Google Scholar
    • Export Citation
  • 49.

    Rodríguez-González MJ, Jiménez-Pearson MA, Duarte F, Poklepovich T, Campos J, Araya LN, et al. Multidrug-resistant CTX-M and CMY-2 producing Escherichia coli isolated from healthy household dogs from the great metropolitan area, Costa Rica. Microb Drug Resist 2020; 26(11): 14211428.

    • Search Google Scholar
    • Export Citation
  • 50.

    Chen Y, Liu Z, Zhang Y, Zhang Z, Lei L, Xia Z. Increasing prevalence of ESBL-producing multidrug resistance Escherichia coli from diseased pets in Beijing, China from 2012 to 2017. Front Microbiol 2019; 10: 2852.

    • Search Google Scholar
    • Export Citation
  • 51.

    Hritcu OM, Schmidt VM, Salem SE, Maciuca IE, Moraru RF, Lipovan I, et al. Geographical variations in virulence factors and antimicrobial resistance amongst Staphylococci isolated from dogs from the United Kingdom and Romania. Front Vet Sci 2020; 7: 414.

    • Search Google Scholar
    • Export Citation
  • 52.

    Guardabassi L, Prescott JF. Antimicrobial stewardship in small animal veterinary practice. Vet Clin North Am Small Anim Pract 2015; 45(2): 361vii.

    • Search Google Scholar
    • Export Citation
  • 53.

    Yudhanto S, Varga C. Knowledge and attitudes of small animal veterinarians on antimicrobial use practices impacting the selection of antimicrobial resistance in dogs and cats in Illinois, United States: a spatial epidemiological approach. Antibiotics (Basel) 2023; 12(13): 542.

    • Search Google Scholar
    • Export Citation
  • 54.

    Carvalho AC, Barbosa AV, Arais LR, Ribeiro PF, Carneiro VC, Cerqueira AMF. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Braz J Microbiol 2016; 47(1): 150158.

    • Search Google Scholar
    • Export Citation
  • 55.

    de Menezes MP, Facin AC, Cardozo MV, Costa MT, Moraes PC. Evaluation of the resistance profile of bacteria obtained from infected sites of dogs in a veterinary teaching hospital in Brazil: a retrospective study. Top Companion Anim Med 2021; 42: 100489.

    • Search Google Scholar
    • Export Citation
  • 56.

    Jung WK, Shin S, Park YK, Noh SM, Shin SR, Yoo HS, et al. Distribution and antimicrobial resistance profiles of bacterial species in stray dogs, hospital-admitted dogs, and veterinary staff in South Korea. Prev Vet Med 2020; 184: 105151.

    • Search Google Scholar
    • Export Citation
  • 57.

    Hughes LA, Williams N, Clegg P, Callaby R, Nuttall T, Coyne K, et al. Cross-sectional survey of antimicrobial prescribing patterns in UK small animal veterinary practice. Prev Vet Med 2012; 104(3–4): 309316.

    • Search Google Scholar
    • Export Citation
  • 58.

    Boehmer T, Vogler AJ, Thomas A, Sauer S, Hergenroether M, Straubinger RK, et al. Phenotypic characterization and whole genome analysis of extended-spectrum beta-lactamase-producing bacteria isolated from dogs in Germany. PLoS One 2018; 13(10): e0206252.

    • Search Google Scholar
    • Export Citation
  • 59.

    Carvalho I, Cunha R, Martins C, Martínez-Álvarez S, Safia N, Pimenta P, et al. Antimicrobial resistance genes and diversity of clones among faecal ESBL-producing Escherichia coli isolated from healthy and sick dogs living in Portugal. Antibiotics (Basel) 2021; 10(8): 1013.

    • Search Google Scholar
    • Export Citation
  • 60.

    de Oliveira PA, Moura RA, Rodrigues GV, Lopes KFC, Zaniolo MM, Rubio KAJ, et al. Detection of extended spectrum beta-lactamases and resistance in members of the Enterobacteriaceae family isolated from healthy sheep and dogs in Umuarama, Paraná, Brazil. Semina Ciênc Agrár 2016; 37: 829.

    • Search Google Scholar
    • Export Citation
  • 61.

    Abreu-Salinas F, Díaz D, García I, Lumbreras P, López AM, Fidalgo LE, et al. High prevalence and diversity of cephalosporin-resistant Enterobacteriaceae including extraintestinal pathogenic E. coli CC648 lineage in rural and urban dogs in northwest Spain. Antibiotics (Basel, Switzerland) 2020; 9(8): 468.

    • Search Google Scholar
    • Export Citation
  • 62.

    Baede VO, Wagenaar JA, Broens EM, Duim B, Dohmen W, Nijsse R, et al. Longitudinal study of extended-spectrum lactamase and AmpC-producing Enterobacteriaceae in household dogs. Antimicrob Agents Chemother 2015; 59(6): 31173124.

    • Search Google Scholar
    • Export Citation
  • 63.

    Deepthi B, Srivani M, Ramani RN, Chaitanya Y. Detection of extended spectrum beta-lactamase (ESBL) producing Escherichia coli in companion dogs. Pharma Innov 2020; 9(9S): 189194.

    • Search Google Scholar
    • Export Citation
  • 64.

    Gumus B, Celik B, Kahraman BB, Sigirci BD, Ak S. Determination of extended spectrum beta-lactamase (ESBL) and AmpC beta-lactamase producing Escherichia coli prevalence in faecal samples of healthy dogs and cats. Rev Med Vet 2017; 168: 4652.

    • Search Google Scholar
    • Export Citation
  • 65.

    Abbas G, Khan I, Mohsin M, Sajjad-Ur-Rahman, Younas T, Ali S. High rates of CTX-M group-1 extended-spectrum β-lactamases producing Escherichia coli from pets and their owners is Faisalabad, Pakistan. Infect Drug Resist 2019; 12: 571578.

    • Search Google Scholar
    • Export Citation
  • 66.

    Telling K, Brauer A, Laht M, Kalmus P, Toompere K, Kisand V, et al. Characteristics of extended-spectrum beta-lactamase-producing Enterobacteriaceae and contact to animals in Estonia. Microorganisms 2020; 8(8): 1130.

    • Search Google Scholar
    • Export Citation
  • 67.

    Ma L, Li AD, Yin XL, Zhang T. The Prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments. Environ Sci Technol 2017; 51(10): 57215728.

    • Search Google Scholar
    • Export Citation
  • 68.

    Toombs LJ, Benschopa J, Frencha NP, Biggsa PJ, Midwintera AC, Marshalla JC, et al. Carriage of extended-spectrum beta-lactamase-and AmpC beta-lactamase-producing Escherichia coli from humans and pets in the same households. Appl Environ Microbiol 2020; 86(24): e01613–20.

    • Search Google Scholar
    • Export Citation
  • 69.

    Nji E, Kazibwe J, Hambridge T, Joko CA, Larbi AA, Damptey LAO, et al. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci Rep 2021; 11(1): 3372.

    • Search Google Scholar
    • Export Citation
  • 70.

    Bourne JA, Chong WL, Gordon DM. Genetic structure, antimicrobial resistance, and frequency of human associated Escherichia coli sequence types among faecal isolates from healthy dogs and cats living in Canberra, Australia. PloS one 2019; 14(3): e0212867.

    • Search Google Scholar
    • Export Citation
  • 71.

    Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J, Angulo FJ, et al. Global incidence of human shiga toxin–producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog Dis 2014; 11(6): 447455.

    • Search Google Scholar
    • Export Citation
  • 72.

    Vega-Manriquez XD, Ubiarco A, Verdugo A, Hernández U, Navarro A, Ahumada RE, et al. Pet dogs potential transmitters of pathogenic Escherichia coli with resistance to antimicrobials. Arch Microbiol 2020; 202(5): 11731179.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2024 0 0 0
Jun 2024 0 0 0
Jul 2024 0 0 0
Aug 2024 0 0 0
Sep 2024 967 14 11
Oct 2024 387 7 7
Nov 2024 76 0 0