Authors:
Slavil Peykov Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
BioInfoTech Laboratory, Sofia Tech Park, Sofia, Bulgaria
Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria

Search for other papers by Slavil Peykov in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9431-9511
,
Raina Gergova Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria

Search for other papers by Raina Gergova in
Current site
Google Scholar
PubMed
Close
,
Svetlana Atanasova Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria

Search for other papers by Svetlana Atanasova in
Current site
Google Scholar
PubMed
Close
,
Svetoslav G. Dimov Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria

Search for other papers by Svetoslav G. Dimov in
Current site
Google Scholar
PubMed
Close
, and
Tanya Strateva Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria

Search for other papers by Tanya Strateva in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5197-1849
Restricted access

Abstract

Delftia acidovorans is an aerobic, non-fermenting Gram-negative bacterium (NFGNB), found in soil, water and hospital environments. It is rarely clinically significant, most commonly affecting hospitalized or immunocompromised patients. The present study aimed to explore the genomic characteristics of a Bulgarian clinical D. acidovorans isolate (designated Dac759) in comparison to all strains of this species with available genomes in the NCBI Genome database (n = 34). Dac759 was obtained in 2021 from the sputum of a 65-year-old female immunocompetent outpatient with bronchitis. Species identification using MALDI-TOF mass spectrometry, antimicrobial susceptibility testing, whole-genome sequencing (WGS), and phylogenomic analysis were performed. The isolate demonstrated high-level resistance to colistin (16 mg L−1); resistance to gentamicin; reduced susceptibility to piperacillin, piperacillin-tazobactam, ceftazidime, cefepime, ciprofloxacin, and levofloxacin; and susceptibility to imipenem, meropenem, amikacin, and tobramycin. The observed genome size (6.43 Mb) and GC content (66.76%) were comparable with the accessible data from sequenced D. acidovorans genomes. A limited number of resistance determinants were identified in the assembled genome as follows: blaOXA-459, emrE, oqxB, and mexCD-oprJ. The phylogenomic analysis indicated a high heterogenicity of the included D. acidovorans genomes. In conclusion, to the best of our knowledge, this is the first documented case of a clinically relevant D. acidovorans isolate in Bulgaria. Unlike the majority of reports in the literature, Dac759 affected a patient with no malignancies or other preexisting comorbidities. With this in mind, its genome sequence is a valuable resource for the fundamental study of uncommon bacterial pathogens of public health importance.

  • 1.

    Di Pilato V, Willison E, Marchese A. The microbiology and pathogenesis of nonfermenting Gram-negative infections. Curr Opin Infect Dis 2023; 36(6): 537. https://doi.org/10.1097/qco.0000000000000969.

    • Search Google Scholar
    • Export Citation
  • 2.

    Wisplinghoff H. Pseudomonas spp., acinetobacter spp. and miscellaneous gram-negative Bacilli, infectious diseases, 4th ed.; 2017. pp. 15791599.e2. https://doi.org/10.1016/B978-0-7020-6285-8.00181-7.

    • Search Google Scholar
    • Export Citation
  • 3.

    Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022; 399(10325): 62955. https://doi.org/10.1016/s0140-6736(21)02724-0.

    • Search Google Scholar
    • Export Citation
  • 4.

    Rattanaumpawan P, Ussavasodhi P, Kiratisin P, Aswapokee N. Epidemiology of bacteremia caused by uncommon non-fermentative gram-negative bacteria. BMC Infect Dis 2013; 13(1): 167. https://doi.org/10.1186/1471-2334-13-167.

    • Search Google Scholar
    • Export Citation
  • 5.

    Chawla K, Vishwanath S, Munim FC. Nonfermenting gram-negative Bacilli other than Pseudomonas aeruginosa and Acinetobacter spp. causing respiratory tract infections in a Tertiary Care Center. J Glob Infect Dis 2013; 5(4): 1448. https://doi.org/10.4103/0974-777X.121996.

    • Search Google Scholar
    • Export Citation
  • 6.

    Whistler T, Sangwichian O, Jorakate P, Sawatwong P, Surin U, Piralam B, et al. Identification of Gram negative non-fermentative bacteria: how hard can it be? Plos Negl Trop Dis 2019; 13(9): e0007729. https://doi.org/10.1371/journal.pntd.0007729.

    • Search Google Scholar
    • Export Citation
  • 7.

    Yildiz H, Sünnetçioğlu A, Ekin S, Baran , Özgökçe M, Aşker S, et al. Delftia acidovorans pneumonia with lung cavities formation. Colomb Médica CM 2019; 50(3): 21521. https://doi.org/10.25100/cm.v50i3.4025.

    • Search Google Scholar
    • Export Citation
  • 8.

    Bilgin H, Sarmis A, Tigen E, Soyletir G, Mulazimoglu L. Delftia acidovorans: a rare pathogen in immunocompetent and immunocompromised patients. Can J Infect Dis Med Microbiol 2015; 26(5): 2779. https://doi.org/10.1155/2015/973284.

    • Search Google Scholar
    • Export Citation
  • 9.

    Højgaard SMM, Rezahosseini O, Knudsen JD, Fuglebjerg NJU, Skov M, Nielsen SD, et al. Characteristics and outcomes of patients with Delftia acidovorans infections: a retrospective cohort study. Microbiol Spectr 2022; 10(4): e00326-22. https://doi.org/10.1128/spectrum.00326-22.

    • Search Google Scholar
    • Export Citation
  • 10.

    Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 2018; 46(W1): W2828. https://doi.org/10.1093/nar/gky467.

    • Search Google Scholar
    • Export Citation
  • 11.

    The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters, Version 14.0.; 2024. Available online: https://eucast.org [accessed on 28 May 2024].

    • Search Google Scholar
    • Export Citation
  • 12.

    Babraham bioinformatics – FastQC A quality control tool for high throughput sequence data [Internet]. [cited 2024 Jun 20]. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

    • Search Google Scholar
    • Export Citation
  • 13.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 211420. https://doi.org/10.1093/bioinformatics/btu170.

    • Search Google Scholar
    • Export Citation
  • 14.

    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19(5): 45577. https://doi.org/10.1089/cmb.2012.0021.

    • Search Google Scholar
    • Export Citation
  • 15.

    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29(8): 10725. https://doi.org/10.1093/bioinformatics/btt086.

    • Search Google Scholar
    • Export Citation
  • 16.

    Afgan E, Nekrutenko A, Grüning BA, Blankenberg D, Goecks J, Schatz MC, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 2022; 50(W1): W34551. https://doi.org/10.1093/nar/gkac247.

    • Search Google Scholar
    • Export Citation
  • 17.

    Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 2023 Jan; 51(D1): D6909. https://doi.org/10.1093/nar/gkac920.

    • Search Google Scholar
    • Export Citation
  • 18.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30(14): 20689. https://doi.org/10.1093/bioinformatics/btu153.

    • Search Google Scholar
    • Export Citation
  • 19.

    Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31(22): 36913. https://doi.org/10.1093/bioinformatics/btv421.

    • Search Google Scholar
    • Export Citation
  • 20.

    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30(9): 13123. https://doi.org/10.1093/bioinformatics/btu033.

    • Search Google Scholar
    • Export Citation
  • 21.

    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49(W1): W2936. https://doi.org/10.1093/nar/gkab301.

    • Search Google Scholar
    • Export Citation
  • 22.

    Stsiapanava A, Selmer M. Crystal structure of ErmE - 23S rRNA methyltransferase in macrolide resistance. Sci Rep 2019; 9(1): 14607. https://doi.org/10.1038/s41598-019-51174-0.

    • Search Google Scholar
    • Export Citation
  • 23.

    Bharatham N, Bhowmik P, Aoki M, Okada U, Sharma S, Yamashita E, et al. Structure and function relationship of OqxB efflux pump from Klebsiella pneumoniae. Nat Commun 2021; 12(1): 5400. https://doi.org/10.1038/s41467-021-25679-0.

    • Search Google Scholar
    • Export Citation
  • 24.

    Bhat SV, Maughan H, Cameron ADS, Yost CK. Phylogenomic analysis of the genus Delftia reveals distinct major lineages with ecological specializations. Microb Genomics 2022; 8(9). https://doi.org/10.1099/mgen.0.000864.

    • Search Google Scholar
    • Export Citation
  • 25.

    Lu TL, Huang C. Retrospective cohort study on Delftia acidovorans infections in patients: a rare and significant infection. Infect Drug Resist 2024; 17: 17419. https://doi.org/10.2147/IDR.S457781.

    • Search Google Scholar
    • Export Citation
  • 26.

    Khan S, Sistla S, Dhodapkar R, Parija SC. Fatal Delftia acidovorans infection in an immunocompetent patient with empyema. Asian Pac J Trop Biomed 2012; 2(11): 9234. https://doi.org/10.1016/S2221-1691(12)60254-8.

    • Search Google Scholar
    • Export Citation
  • 27.

    Chun J, Lee J, Bae J, Kim M, Lee JG, Shin SY, et al. Delftia acidovorans isolated from the drainage in an immunocompetent patient with empyema. Tuberc Respir Dis 2009; 67(3): 239. https://doi.org/10.4046/trd.2009.67.3.239.

    • Search Google Scholar
    • Export Citation
  • 28.

    Kam SK, Lee WS, Ou TY, Teng SO, Chen FL. Delftia acidovorans bacteremia associated with ascending urinary tract infections proved by molecular method. J Exp Clin Med 2012; 4(3): 1802. https://doi.org/10.1016/j.jecm.2012.04.010.

    • Search Google Scholar
    • Export Citation
  • 29.

    El-Sayed Ahmed MAEG, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect 2020; 9(1): 86885. https://doi.org/10.1080/22221751.2020.1754133.

    • Search Google Scholar
    • Export Citation
  • 30.

    Paterson DL, Harris PNA. Colistin resistance: a major breach in our last line of defence. Lancet Infect Dis 2016; 16(2): 1323. https://doi.org/10.1016/s1473-3099(15)00463-6.

    • Search Google Scholar
    • Export Citation
  • 31.

    Peykov S, Stratev A, Kirov B, Gergova R, Strateva T. First detection of a colistin-resistant Klebsiella aerogenes isolate from a critically ill patient with septic shock in Bulgaria. Acta Microbiol Immunol Hung 2022; 69(3): 20914. https://doi.org/10.1556/030.2022.01833.

    • Search Google Scholar
    • Export Citation
  • 32.

    Lee DH, Cha JH, Kim DW, Lee K, Kim YS, Oh HY, et al. Colistin-degrading proteases confer collective resistance to microbial communities during polymicrobial infections. Microbiome 2022; 10(1): 129. https://doi.org/10.1186/s40168-022-01315-x.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 0 0 0
Jul 2024 0 0 0
Aug 2024 112 5 6
Sep 2024 441 4 6
Oct 2024 309 6 7
Nov 2024 111 2 2
Dec 2024 6 0 0