Delftia acidovorans is an aerobic, non-fermenting Gram-negative bacterium (NFGNB), found in soil, water and hospital environments. It is rarely clinically significant, most commonly affecting hospitalized or immunocompromised patients. The present study aimed to explore the genomic characteristics of a Bulgarian clinical D. acidovorans isolate (designated Dac759) in comparison to all strains of this species with available genomes in the NCBI Genome database (n = 34). Dac759 was obtained in 2021 from the sputum of a 65-year-old female immunocompetent outpatient with bronchitis. Species identification using MALDI-TOF mass spectrometry, antimicrobial susceptibility testing, whole-genome sequencing (WGS), and phylogenomic analysis were performed. The isolate demonstrated high-level resistance to colistin (16 mg L−1); resistance to gentamicin; reduced susceptibility to piperacillin, piperacillin-tazobactam, ceftazidime, cefepime, ciprofloxacin, and levofloxacin; and susceptibility to imipenem, meropenem, amikacin, and tobramycin. The observed genome size (6.43 Mb) and GC content (66.76%) were comparable with the accessible data from sequenced D. acidovorans genomes. A limited number of resistance determinants were identified in the assembled genome as follows: blaOXA-459, emrE, oqxB, and mexCD-oprJ. The phylogenomic analysis indicated a high heterogenicity of the included D. acidovorans genomes. In conclusion, to the best of our knowledge, this is the first documented case of a clinically relevant D. acidovorans isolate in Bulgaria. Unlike the majority of reports in the literature, Dac759 affected a patient with no malignancies or other preexisting comorbidities. With this in mind, its genome sequence is a valuable resource for the fundamental study of uncommon bacterial pathogens of public health importance.
Di Pilato V, Willison E, Marchese A. The microbiology and pathogenesis of nonfermenting Gram-negative infections. Curr Opin Infect Dis 2023; 36(6): 537. https://doi.org/10.1097/qco.0000000000000969.
Wisplinghoff H. Pseudomonas spp., acinetobacter spp. and miscellaneous gram-negative Bacilli, infectious diseases, 4th ed.; 2017. pp. 1579–1599.e2. https://doi.org/10.1016/B978-0-7020-6285-8.00181-7.
Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022; 399(10325): 629–55. https://doi.org/10.1016/s0140-6736(21)02724-0.
Rattanaumpawan P, Ussavasodhi P, Kiratisin P, Aswapokee N. Epidemiology of bacteremia caused by uncommon non-fermentative gram-negative bacteria. BMC Infect Dis 2013; 13(1): 167. https://doi.org/10.1186/1471-2334-13-167.
Chawla K, Vishwanath S, Munim FC. Nonfermenting gram-negative Bacilli other than Pseudomonas aeruginosa and Acinetobacter spp. causing respiratory tract infections in a Tertiary Care Center. J Glob Infect Dis 2013; 5(4): 144–8. https://doi.org/10.4103/0974-777X.121996.
Whistler T, Sangwichian O, Jorakate P, Sawatwong P, Surin U, Piralam B, et al. Identification of Gram negative non-fermentative bacteria: how hard can it be? Plos Negl Trop Dis 2019; 13(9): e0007729. https://doi.org/10.1371/journal.pntd.0007729.
Yildiz H, Sünnetçioğlu A, Ekin S, Baran Aİ, Özgökçe M, Aşker S, et al. Delftia acidovorans pneumonia with lung cavities formation. Colomb Médica CM 2019; 50(3): 215–21. https://doi.org/10.25100/cm.v50i3.4025.
Bilgin H, Sarmis A, Tigen E, Soyletir G, Mulazimoglu L. Delftia acidovorans: a rare pathogen in immunocompetent and immunocompromised patients. Can J Infect Dis Med Microbiol 2015; 26(5): 277–9. https://doi.org/10.1155/2015/973284.
Højgaard SMM, Rezahosseini O, Knudsen JD, Fuglebjerg NJU, Skov M, Nielsen SD, et al. Characteristics and outcomes of patients with Delftia acidovorans infections: a retrospective cohort study. Microbiol Spectr 2022; 10(4): e00326-22. https://doi.org/10.1128/spectrum.00326-22.
Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 2018; 46(W1): W282–8. https://doi.org/10.1093/nar/gky467.
The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters, Version 14.0.; 2024. Available online: https://eucast.org [accessed on 28 May 2024].
Babraham bioinformatics – FastQC A quality control tool for high throughput sequence data [Internet]. [cited 2024 Jun 20]. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19(5): 455–77. https://doi.org/10.1089/cmb.2012.0021.
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29(8): 1072–5. https://doi.org/10.1093/bioinformatics/btt086.
Afgan E, Nekrutenko A, Grüning BA, Blankenberg D, Goecks J, Schatz MC, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 2022; 50(W1): W345–51. https://doi.org/10.1093/nar/gkac247.
Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 2023 Jan; 51(D1): D690–9. https://doi.org/10.1093/nar/gkac920.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30(14): 2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31(22): 3691–3. https://doi.org/10.1093/bioinformatics/btv421.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30(9): 1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49(W1): W293–6. https://doi.org/10.1093/nar/gkab301.
Stsiapanava A, Selmer M. Crystal structure of ErmE - 23S rRNA methyltransferase in macrolide resistance. Sci Rep 2019; 9(1): 14607. https://doi.org/10.1038/s41598-019-51174-0.
Bharatham N, Bhowmik P, Aoki M, Okada U, Sharma S, Yamashita E, et al. Structure and function relationship of OqxB efflux pump from Klebsiella pneumoniae. Nat Commun 2021; 12(1): 5400. https://doi.org/10.1038/s41467-021-25679-0.
Bhat SV, Maughan H, Cameron ADS, Yost CK. Phylogenomic analysis of the genus Delftia reveals distinct major lineages with ecological specializations. Microb Genomics 2022; 8(9). https://doi.org/10.1099/mgen.0.000864.
Lu TL, Huang C. Retrospective cohort study on Delftia acidovorans infections in patients: a rare and significant infection. Infect Drug Resist 2024; 17: 1741–9. https://doi.org/10.2147/IDR.S457781.
Khan S, Sistla S, Dhodapkar R, Parija SC. Fatal Delftia acidovorans infection in an immunocompetent patient with empyema. Asian Pac J Trop Biomed 2012; 2(11): 923–4. https://doi.org/10.1016/S2221-1691(12)60254-8.
Chun J, Lee J, Bae J, Kim M, Lee JG, Shin SY, et al. Delftia acidovorans isolated from the drainage in an immunocompetent patient with empyema. Tuberc Respir Dis 2009; 67(3): 239. https://doi.org/10.4046/trd.2009.67.3.239.
Kam SK, Lee WS, Ou TY, Teng SO, Chen FL. Delftia acidovorans bacteremia associated with ascending urinary tract infections proved by molecular method. J Exp Clin Med 2012; 4(3): 180–2. https://doi.org/10.1016/j.jecm.2012.04.010.
El-Sayed Ahmed MAEG, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect 2020; 9(1): 868–85. https://doi.org/10.1080/22221751.2020.1754133.
Paterson DL, Harris PNA. Colistin resistance: a major breach in our last line of defence. Lancet Infect Dis 2016; 16(2): 132–3. https://doi.org/10.1016/s1473-3099(15)00463-6.
Peykov S, Stratev A, Kirov B, Gergova R, Strateva T. First detection of a colistin-resistant Klebsiella aerogenes isolate from a critically ill patient with septic shock in Bulgaria. Acta Microbiol Immunol Hung 2022; 69(3): 209–14. https://doi.org/10.1556/030.2022.01833.
Lee DH, Cha JH, Kim DW, Lee K, Kim YS, Oh HY, et al. Colistin-degrading proteases confer collective resistance to microbial communities during polymicrobial infections. Microbiome 2022; 10(1): 129. https://doi.org/10.1186/s40168-022-01315-x.