Authors:
Lidan Liu Guangxi Reproductive Medicine Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China

Search for other papers by Lidan Liu in
Current site
Google Scholar
PubMed
Close
,
Tong Feng State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530000, China

Search for other papers by Tong Feng in
Current site
Google Scholar
PubMed
Close
,
Qingyou Liu Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China

Search for other papers by Qingyou Liu in
Current site
Google Scholar
PubMed
Close
,
Ming Liao Guangxi Reproductive Medicine Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China

Search for other papers by Ming Liao in
Current site
Google Scholar
PubMed
Close
,
Bo Liu Guangxi Reproductive Medicine Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China

Search for other papers by Bo Liu in
Current site
Google Scholar
PubMed
Close
, and
Mujun Li Guangxi Reproductive Medicine Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China

Search for other papers by Mujun Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0004-8862-1430
Restricted access

Abstract

Although the relationship between vaginal microorganisms and fertility has been well established, only few studies have investigated vaginal microorganisms in women undergoing in vitro fertilization (IVF). Our aim was to study the differences in vaginal microbiota between infertile women with repeated implantation failure (RIF) and those who achieved clinical pregnancy in their first frozen embryo transfer cycle. We compared the vaginal microbiota of patients with a history of RIF (n = 37) with that of the control group (n = 43). Following DNA extraction, metagenomic sequencing was employed for the analysis of alpha and beta diversities, distinctions in bacterial species, and the functional annotation of microbial genes. Furthermore, disparities between the two groups were revealed. Alpha diversity analysis revealed that the Shannon index was higher in the RIF group (P < 0.05). There were differences in the beta diversity between groups (P = 0.16). At the bacterial family level, the relative abundance of Actinomycetaceae (P = 0.013) and Ruminococcaceae (P = 0.013) were significantly higher in the RIF group. At the genus level, the abundances of Actinomyces (P = 0.028) and Subdoligranulum (P = 0.013) were significantly higher in the RIF group. At the species level, the abundances of Prevotella timonensis (P = 0.028), Lactobacillus jensenii (P = 0.049), and Subdoligranulum (P = 0.013) were significantly higher in the RIF group. Significant differences in family, genus, species, alpha and beta diversity were observed in the vaginal microbiota between groups. Notably, among these findings, the Subdoligranulum genus emerged as the most prominent correlating factor.

  • 1.

    Borght MV, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem 2018; 62: 210.

  • 2.

    Adriaenssens T, Van Vaerenbergh I, Coucke W, Segers I, Verheyen G, Anckaert E, et al. Cumulus-corona gene expression analysis combined with morphological embryo scoring in single embryo transfer cycles increases live birth after fresh transfer and decreases time to pregnancy. J Assist Reprod Genet 2019; 36(3): 433443.

    • Search Google Scholar
    • Export Citation
  • 3.

    Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014; 28(1): 1438.

    • Search Google Scholar
    • Export Citation
  • 4.

    Fu M, Zhang X, Liang Y, Lin S, Qian W, Fan S. Alterations in vaginal microbiota and associated metabolome in women with recurrent implantation failure. mBio 2020; 11(3): e0324219.

    • Search Google Scholar
    • Export Citation
  • 5.

    Robinson LS, Schwebke J, Lewis WG, Lewis AL. Identification and characterization of NanH2 and NanH3, enzymes responsible for sialidase activity in the vaginal bacterium Gardnerella vaginalis. J Biol Chem 2019; 294(14): 52305245.

    • Search Google Scholar
    • Export Citation
  • 6.

    Kwok L, Stapleton AE, Stamm WE, Hillier SL, Wobbe CL, Gupta K. Adherence of Lactobacillus crispatus to vaginal epithelial cells from women with or without a history of recurrent urinary tract infection. J Urol 2006; 176(5): 20504, discussion 2054.

    • Search Google Scholar
    • Export Citation
  • 7.

    Nelson DB, Hanlon AL, Wu G, Liu C, Fredricks DN. First trimester levels of BV-associated bacteria and risk of miscarriage among women early in pregnancy. Matern Child Health J 2015; 19(12): 26827.

    • Search Google Scholar
    • Export Citation
  • 8.

    Nelson DB, Hanlon A, Nachamkin I, Haggerty C, Mastrogiannis DS, Liu C, et al. Early pregnancy changes in bacterial vaginosis-associated bacteria and preterm delivery. Paediatr Perinat Epidemiol 2014; 28(2): 8896.

    • Search Google Scholar
    • Export Citation
  • 9.

    Haahr T, Zacho J, Bräuner M, Shathmigha K, Skov Jensen J, Humaidan P. Reproductive outcome of patients undergoing in vitro fertilisation treatment and diagnosed with bacterial vaginosis or abnormal vaginal microbiota: a systematic PRISMA review and meta-analysis. BJOG 2019; 126(2): 200207.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bracewell-Milnes T, Saso S, Nikolaou D, Norman-Taylor J, Johnson M, Thum MY. Investigating the effect of an abnormal cervico-vaginal and endometrial microbiome on assisted reproductive technologies: a systematic review. Am J Reprod Immunol 2018; 80(5): e13037.

    • Search Google Scholar
    • Export Citation
  • 11.

    Veeck LL. Preembryo Grading. Atlas of the Human Oocyte and Early Conceptus; 1991.

  • 12.

    Liu J, Luo M, Zhang Y, Cao G, Wang S. Association of high-risk human papillomavirus infection duration and cervical lesions with vaginal microbiota composition. Ann Transl Med 2020; 8(18): 1161.

    • Search Google Scholar
    • Export Citation
  • 13.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 211420.

  • 14.

    Di Genova A, Buena-Atienza E, Ossowski S, Sagot MF. Efficient hybrid de novo assembly of human genomes with WENGAN. Nat Biotechnol 2021; 39(4): 422430.

    • Search Google Scholar
    • Export Citation
  • 15.

    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 3579.

  • 16.

    Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 2015; 12(10): 9023.

    • Search Google Scholar
    • Export Citation
  • 17.

    Chen C, Zhou Y, Fu H, Xiong X, Fang S, Jiang H, et al. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat Commun 2021; 12(1): 1106.

    • Search Google Scholar
    • Export Citation
  • 18.

    Huang P, Zhang Y, Xiao K, Jiang F, Wang H, Tang D, et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome 2018; 6(1): 211.

    • Search Google Scholar
    • Export Citation
  • 19.

    Janiak MC, Montague MJ, Villamil CI, Stock MK, Trujillo AE, DePasquale AN, et al. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. Microbiome 2021; 9(1): 68.

    • Search Google Scholar
    • Export Citation
  • 20.

    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27(5): 824834.

  • 21.

    Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 2016; 102: 311.

    • Search Google Scholar
    • Export Citation
  • 22.

    Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 2010; 38(12): e132.

  • 23.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30(14): 20689.

  • 24.

    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47(D1): D309D314.

    • Search Google Scholar
    • Export Citation
  • 25.

    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34(8): 21152122.

    • Search Google Scholar
    • Export Citation
  • 26.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550.

    • Search Google Scholar
    • Export Citation
  • 27.

    Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. Package ‘vegan’. Community ecology package, version. 2013; 2(9): 1-295.

    • Search Google Scholar
    • Export Citation
  • 28.

    Bernabeu A, Lledo B, Díaz MC, Lozano FM, Ruiz V, Fuentes A, et al. Effect of the vaginal microbiome on the pregnancy rate in women receiving assisted reproductive treatment. J Assist Reprod Genet 2019; 36(10): 21112119.

    • Search Google Scholar
    • Export Citation
  • 29.

    Hong X, Qin P, Huang K, Ding X, Ma J, Xuan Y, et al. Association between polycystic ovary syndrome and the vaginal microbiome: a case-control study. Clin Endocrinol(Oxf) 2020; 93(1): 5260.

    • Search Google Scholar
    • Export Citation
  • 30.

    Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2014; 2(1): 4.

    • Search Google Scholar
    • Export Citation
  • 31.

    Dai JJ, Zeng LP, Tang HR, Song XL, Zhong HZ, Jia HY, et al. Study of vaginal microbiota of infertile women. Chin J Clin Obstet Gynecol 2016; 17(06): 4903.

    • Search Google Scholar
    • Export Citation
  • 32.

    Mitra A, MacIntyre DA, Ntritsos G, Smith A, Tsilidis KK, Marchesi JR, et al. The vaginal microbiota associates with the regression of untreated cervical intraepithelial neoplasia 2 lesions. Nat Commun 2020; 11(1): 1999.

    • Search Google Scholar
    • Export Citation
  • 33.

    van Teijlingen NH, Helgers LC, Zijlstra-Willems EM, van Hamme JL, Ribeiro CMS, Strijbis K, et al. Vaginal dysbiosis associated-bacteria Megasphaera elsdenii and Prevotella timonensis induce immune activation via dendritic cells. J Reprod Immunol 2020; 138: 103085.

    • Search Google Scholar
    • Export Citation
  • 34.

    Bosquet EG, Ferrer I, Valls C, Borrás M, Lailla JM. The value of interleukin-8, interleukin-6 and interleukin-1beta in vaginal wash as predictors of preterm delivery. Gynecol Obstet Invest 2005; 59(3): 1758.

    • Search Google Scholar
    • Export Citation
  • 35.

    Koedooder R, Singer M, Schoenmakers S, Savelkoul PHM, Morré SA, de Jonge JD, et al. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: a prospective study. Hum Reprod 2019; 34(6): 10421054.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 0 0 0
Jul 2024 0 0 0
Aug 2024 379 10 11
Sep 2024 515 10 13
Oct 2024 337 5 7
Nov 2024 221 3 4
Dec 2024 80 2 3