Authors:
Gabriela Paulina Guel-García Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by Gabriela Paulina Guel-García in
Current site
Google Scholar
PubMed
Close
,
Jessica I. Licea-Herrera Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by Jessica I. Licea-Herrera in
Current site
Google Scholar
PubMed
Close
,
José Vásquez-Villanueva Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd. Victoria, C.P. 87274, Mexico

Search for other papers by José Vásquez-Villanueva in
Current site
Google Scholar
PubMed
Close
,
Gildardo Rivera Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by Gildardo Rivera in
Current site
Google Scholar
PubMed
Close
,
Virgilio Bocanegra-García Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by Virgilio Bocanegra-García in
Current site
Google Scholar
PubMed
Close
, and
Ana Verónica Martínez-Vázquez Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico

Search for other papers by Ana Verónica Martínez-Vázquez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6144-5439
Restricted access

Abstract

Listeria monocytogenes is a foodborne opportunistic pathogen, that causes outbreaks and fatal cases worldwide. However, only few studies have been published in Mexico reporting the prevalence of this pathogen in food. Therefore, the objective of this current study is to evaluate the prevalence of L. monocytogenes in cheese sold in Tamaulipas, Mexico, and its potential risk to the population. For this purpose, samples were taken in 100 stores during the months of February, June and October 2023, and a total of 300 cheese products in 10 municipalities of Tamaulipas, Mexico were collected. Identification was performed by culture and PCR. Ten virulence factors were also analyzed and susceptibility testing to 14 antibiotics was performed. As a result, a prevalence of L. monocytogenes was detected in 12%. The most frequently detected virulence factors were actA (83.3%, 30/36) and hly (83.3%, 30/36). The strains were resistant to only 9 of the 14 antibiotics tested. The strains showed resistance in higher percentage to sulfamethoxazole/trimethoprim (STX/TMP: 38.8%, 14/36), penicillin (PE: 16.6%, 6/36), tetracycline (TE: 13.8%, 5/36) and amoxicillin/clavulanic acid (AMC: 13.8%, 5/36). The results of the current study show the presence of L. monocytogenes in cheese products sold in Tamaulipas, Mexico. The low prevalence of L. monocytogenes and low resistance to antibiotics could imply a low risk for public health. However, it is necessary to implement monitoring of L. monocytogenes in food, to monitor its potential risk for the consumer.

  • 1.

    Díaz Galindo EP, Valladares Carranza B, Gutiérrez Castillo ADC, Arriaga Jordan CM, Quintero-Salazar B, Cervantes Acosta P, et al. Caracterización de Queso Fresco Comercializado En Mercados Fijos y Populares de Toluca, Estado de México. Rev Mex Cienc Pecu 2017; 8: 139146. https://doi.org/10.22319/rmcp.v8i2.4419.

    • Search Google Scholar
    • Export Citation
  • 2.

    De La Rosa-Hernández MC, Cadena-Ramírez A, Téllez-Jurado A, Gómez-Aldapa CA, Rangel-Vargas E, Chávez-Urbiola EA, et al. Presence of multidrug-resistant Shiga Toxin–producing Escherichia coli, enteropathogenic Escherichia coli, and enterotoxigenic Escherichia coli on fresh cheeses from local retail markets in Mexico. J Food Prot 2018; 81: 17481754. https://doi.org/10.4315/0362-028X.JFP-18-166.

    • Search Google Scholar
    • Export Citation
  • 3.

    Loeza-Lara PD, Medina-Estrada RI, Bravo-Monzón ÁE, Jiménez-Mejía R. Frequency and characteristics of ESBL-producing Escherichia coli isolated from Mexican fresh cheese. Food Sci Technol 2023; 43: e108222. https://doi.org/10.1590/fst.108222.

    • Search Google Scholar
    • Export Citation
  • 4.

    Wiśniewski P, Zakrzewski AJ, Zadernowska A, Chajęcka-Wierzchowska W. Antimicrobial resistance and virulence characterization of Listeria monocytogenes strains isolated from food and food processing environments. Pathogens 2022; 11: 1099. https://doi.org/10.3390/pathogens11101099.

    • Search Google Scholar
    • Export Citation
  • 5.

    Imre K, Ban-Cucerzan A, Herman V, Sallam KI, Cristina RT, Abd-Elghany SM, et al. Occurrence, pathogenic potential and antimicrobial resistance of Escherichia coli isolated from raw milk cheese commercialized in Banat region, Romania. Antibiotics 2022; 11: 721. https://doi.org/10.3390/antibiotics11060721.

    • Search Google Scholar
    • Export Citation
  • 6.

    Praça J, Furtado R, Coelho A, Correia CB, Borges V, Gomes JP, et al. Listeria monocytogenes, Escherichia coli and coagulase positive staphylococci in cured raw milk cheese from Alentejo region, Portugal. Microorganisms 2023; 11: 322. https://doi.org/10.3390/microorganisms11020322.

    • Search Google Scholar
    • Export Citation
  • 7.

    Gajewska J, Zakrzewski A, Chajęcka-Wierzchowska W, Zadernowska A. Meta-analysis of the global occurrence of S. aureus in raw cattle milk and artisanal cheeses. Food Control 2023; 147: 109603. https://doi.org/10.1016/j.foodcont.2023.109603.

    • Search Google Scholar
    • Export Citation
  • 8.

    Wiktorczyk-Kapischke N, Skowron K, Grudlewska-Buda K, Wałecka-Zacharska E, Korkus J, Gospodarek-Komkowska E. Adaptive response of Listeria monocytogenes to the stress factors in the food processing environment. Front Microbiol 2021; 12: 710085. https://doi.org/10.3389/fmicb.2021.710085.

    • Search Google Scholar
    • Export Citation
  • 9.

    Churchill KJ, Sargeant JM, Farber JM, O’connor AM. Prevalence of Listeria monocytogenes in select ready-to-eat foods—Deli Meat, soft cheese, and packaged salad: a systematic review and meta-analysis. J Food Prot 2019; 82: 344357. https://doi.org/10.4315/0362-028X.JFP-18-158.

    • Search Google Scholar
    • Export Citation
  • 10.

    Osek J, Wieczorek K. Listeria monocytogenes—how this pathogen uses its virulence mechanisms to infect the hosts. Pathogens 2022; 11: 1491. https://doi.org/10.3390/pathogens11121491.

    • Search Google Scholar
    • Export Citation
  • 11.

    Koopmans MM, Brouwer MC, Vázquez-Boland JA, Van De Beek D. Human listeriosis. Clin Microbiol Rev 2023; 36: e0006019. https://doi.org/10.1128/cmr.00060-19.

    • Search Google Scholar
    • Export Citation
  • 12.

    Matereke LT, Okoh AI. Listeria monocytogenes virulence, antimicrobial resistance and environmental persistence: a review. Pathogens 2020; 9: 528. https://doi.org/10.3390/pathogens9070528.

    • Search Google Scholar
    • Export Citation
  • 13.

    Chen Y, Knabel SJ. Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. Appl Environ Microbiol 2007; 73: 62996304.

    • Search Google Scholar
    • Export Citation
  • 14.

    Suárez M, González-Zorn B, Vega Y, Chico-Calero I, Vázquez-Boland JA. A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell. Microbiol. 2001; 3: 853864. https://doi.org/10.1046/j.1462-5822.2001.00160.x.

    • Search Google Scholar
    • Export Citation
  • 15.

    Xu XK, Wu QP, Zhang JM, Deng MQ, Zhou YH. Studies on specific detection of Listeria monocytogenes in foods by duplex PCR. Chin J Health Lab Technol 2009; 19: 11991201.

    • Search Google Scholar
    • Export Citation
  • 16.

    Chen M, Wu Q, Zhang J, Wang J. Prevalence and characterization of Listeria monocytogenes isolated from retail-level ready-to-eat foods in South China. Food Control 2014; 38: 17.

    • Search Google Scholar
    • Export Citation
  • 17.

    Liu D, Lawrence ML, Austin FW, Ainsworth AJ. A multiplex PCR for species-and virulence-specific determination of Listeria monocytogenes. J Microbiol Methods 2007; 71: 133140.

    • Search Google Scholar
    • Export Citation
  • 18.

    Clayton EM, Hill C, Cotter PD, Ross RP. Real-time PCR assay to differentiate listeriolysin S-positive and-negative strains of Listeria monocytogenes. Appl Environ Microbiol 2011; 77: 163171.

    • Search Google Scholar
    • Export Citation
  • 19.

    Notermans SH, Dufrenne J, Leimeister-Wächter M, Domann E, Chakraborty T. Phosphatidylinositol-specific phospholipase C activity as a marker to distinguish between pathogenic and nonpathogenic Listeria species. Appl Environ Microbiol 1991; 57: 26662670.

    • Search Google Scholar
    • Export Citation
  • 20.

    Zhang W, Jayarao BM, Knabel SJ, Zhang W, Jayarao BM, Knabel SJ, et al. Multi-virulence-locus sequence typing of Listeria monocytogenes. Appl Environ Microbiol 2004; 70: 913920. https://doi.org/10.1128/AEM.70.2.913.

    • Search Google Scholar
    • Export Citation
  • 21.

    CLSI Clinical and Laboratory Standards Institute. M100 Performance Standards for Antimicrobial Susceptibility Testing 2020.

  • 22.

    EUCAST The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters 2020.

    • Search Google Scholar
    • Export Citation
  • 23.

    Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and Pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

    • Search Google Scholar
    • Export Citation
  • 24.

    Guel-García P, García De León FJ, Aguilera-Arreola G, Mandujano A, Mireles-Martínez M, Oliva-Hernández A, et al. Prevalence and antimicrobial resistance of Listeria monocytogenes in different raw food from Reynosa, Tamaulipas, Mexico. Foods 2024; 13: 1656. https://doi.org/10.3390/foods13111656.

    • Search Google Scholar
    • Export Citation
  • 25.

    Gérard A, El-Hajjaji S, Burteau S, Fall PA, Pirard B, Taminiau B, et al. Study of the microbial diversity of a panel of Belgian artisanal cheeses associated with challenge studies for Listeria monocytogenes. Food Microbiol 2021; 100: 103861. https://doi.org/10.1016/j.fm.2021.103861.

    • Search Google Scholar
    • Export Citation
  • 26.

    Dehnavi M, Akhodzadeh Basti A, Khanjari A, Rezaei E. Prevalence of Listeria monocytogenes in traditional cheeses obtained from food sale centers of Tehran, Iran. J Food Saf Hyg 2022. https://doi.org/10.18502/jfsh.v7i3.9133.

    • Search Google Scholar
    • Export Citation
  • 27.

    Martinez-Rios V, Dalgaard P. Prevalence of Listeria monocytogenes in European cheeses: a systematic review and meta-analysis. Food Control 2018; 84: 205214. https://doi.org/10.1016/j.foodcont.2017.07.020.

    • Search Google Scholar
    • Export Citation
  • 28.

    Cufaoglu G, Ambarcioglu P, Ayaz ND. Meta-analysis of the prevalence of Listeria spp. and antibiotic resistant L. monocytogenes isolates from foods in Turkey. LWT 2021; 144: 111210. https://doi.org/10.1016/j.lwt.2021.111210.

    • Search Google Scholar
    • Export Citation
  • 29.

    Akrami-Mohajeri F, Derakhshan Z, Ferrante M, Hamidiyan N, Soleymani M, Conti GO, et al. The prevalence and antimicrobial resistance of Listeria spp in raw milk and traditional dairy products delivered in Yazd, Central Iran (2016). Food Chem Toxicol 2018; 114: 141144. https://doi.org/10.1016/j.fct.2018.02.006.

    • Search Google Scholar
    • Export Citation
  • 30.

    Espinosa-Mata E, Mejía L, Villacís JE, Alban V, Zapata S. Detection and genotyping of Listeria monocytogenes in artisanal soft cheeses from Ecuador. Rev Argent Microbiol 2022; 54: 5356. https://doi.org/10.1016/j.ram.2021.02.013.

    • Search Google Scholar
    • Export Citation
  • 31.

    Zafar N. Prevalence, molecular characterization and antibiogram study of Listeria monocytogenes isolated from raw milk and milk products. Pure Appl Biol 2020; 9. https://doi.org/10.19045/bspab.2020.90211.

    • Search Google Scholar
    • Export Citation
  • 32.

    Elavarasi S, Ramesh B, Sathiyamurthy K. Prevalence and antimicrobial resistance pattern of Listeria monocytogenes in ready to eat foods in Tamil Nadu, India. Indian J Sci Technol 2023; 16: 501508. https://doi.org/10.17485/IJST/v16i7.1979.

    • Search Google Scholar
    • Export Citation
  • 33.

    Kayode AJ, Okoh AI. Assessment of multidrug-resistant Listeria monocytogenes in milk and milk product and one health perspective. PLOS ONE 2022; 17: e0270993. https://doi.org/10.1371/journal.pone.0270993.

    • Search Google Scholar
    • Export Citation
  • 34.

    Barría C, Singer RS, Bueno I, Estrada E, Rivera D, Ulloa S, et al. Tracing Listeria monocytogenes contamination in artisanal cheese to the processing environments in cheese producers in Southern Chile. Food Microbiol 2020; 90: 103499. https://doi.org/10.1016/j.fm.2020.103499.

    • Search Google Scholar
    • Export Citation
  • 35.

    McIntyre L, Wilcott L, Naus M. Listeriosis outbreaks in British Columbia, Canada, caused by soft ripened cheese contaminated from environmental sources. BioMed Res Int 2015; 2015: 112. https://doi.org/10.1155/2015/131623.

    • Search Google Scholar
    • Export Citation
  • 36.

    González-Córdova AF, Yescas C, Ortiz-Estrada ÁM, De La Rosa-Alcaraz MDLÁ, Hernández-Mendoza A, Vallejo-Cordoba B. Invited review: artisanal Mexican cheeses. J Dairy Sci 2016; 99: 32503262. https://doi.org/10.3168/jds.2015-10103.

    • Search Google Scholar
    • Export Citation
  • 37.

    Carpentier B, Cerf O. Review - persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 2011; 145: 18. https://doi.org/10.1016/j.ijfoodmicro.2011.01.005.

    • Search Google Scholar
    • Export Citation
  • 38.

    Zakaria AI, Sabala RF. Potential public health hazards related to consumption of poultry contaminated with antibiotic resistant Listeria monocytogenes in Egypt. BMC Microbiol 2024; 24: 41. https://doi.org/10.1186/s12866-024-03183-x.

    • Search Google Scholar
    • Export Citation
  • 39.

    Cao X, Wang Y, Wang Y, Ye C. Isolation and characterization of Listeria monocytogenes from the Black-Headed gull feces in Kunming, China. J Infect Public Health 2018; 11: 5963. https://doi.org/10.1016/j.jiph.2017.03.003.

    • Search Google Scholar
    • Export Citation
  • 40.

    Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, et al. Pathogenicity and virulence of Listeria monocytogenes: a trip from environmental to medical microbiology. Virulence 2021; 12: 25092545. https://doi.org/10.1080/21505594.2021.1975526.

    • Search Google Scholar
    • Export Citation
  • 41.

    Rippa A, Bilei S, Peruzy MF, Marrocco MG, Leggeri P, Bossù T, et al. Antimicrobial resistance of Listeria monocytogenes strains isolated in food and food-processing environments in Italy. Antibiotics 2024; 13: 525. https://doi.org/10.3390/antibiotics13060525.

    • Search Google Scholar
    • Export Citation
  • 42.

    Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018; 16: 3246. https://doi.org/10.1038/nrmicro.2017.126.

    • Search Google Scholar
    • Export Citation
  • 43.

    Lecuit M. Listeria monocytogenes, a model in infection biology. Cell. Microbiol. 2020; 22. https://doi.org/10.1111/cmi.13186.

  • 44.

    Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S. Listeria monocytogenes : review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 2021; 47: 647666. https://doi.org/10.1080/1040841X.2021.1911930.

    • Search Google Scholar
    • Export Citation
  • 45.

    Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of stress response and virulence genes among Listeria monocytogenes strains. Front Microbiol 2022; 12: 738470. https://doi.org/10.3389/fmicb.2021.738470.

    • Search Google Scholar
    • Export Citation
  • 46.

    Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microbes Infect 2007; 9: 12361243. https://doi.org/10.1016/j.micinf.2007.05.011.

    • Search Google Scholar
    • Export Citation
  • 47.

    Baquero F, F Lanza V, Duval M., Coque TM. Ecogenetics of antibiotic resistance in Listeria monocytogenes. Mol Microbiol 2020; 113: 570579. https://doi.org/10.1111/mmi.14454.

    • Search Google Scholar
    • Export Citation
  • 48.

    Anwar TM, Pan H, Chai W, Ed-Dra A, Fang W, Li Y, et al. Genetic diversity, virulence factors, and antimicrobial resistance of Listeria monocytogenes from food, livestock, and clinical samples between 2002 and 2019 in China. Int J Food Microbiol 2022; 366: 109572. https://doi.org/10.1016/j.ijfoodmicro.2022.109572.

    • Search Google Scholar
    • Export Citation
  • 49.

    Dickstein Y, Oster Y, Shimon O, Nesher L, Yahav D, Wiener-Well Y, et al. Antibiotic treatment for invasive nonpregnancy-associated listeriosis and mortality: a retrospective cohort study. Eur J Clin Microbiol Infect Dis 2019; 38: 22432251. https://doi.org/10.1007/s10096-019-03666-0.

    • Search Google Scholar
    • Export Citation
  • 50.

    Olaimat AN, Al‐Holy MA, Shahbaz HM, Al‐Nabulsi AA, Abu Ghoush MH, Osaili TM, et al. Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: a comprehensive review. Compr Rev Food Sci Food Saf 2018; 17: 12771292. https://doi.org/10.1111/1541-4337.12387.

    • Search Google Scholar
    • Export Citation
  • 51.

    Temple ME, Nahata MC. Treatment of listeriosis. Ann Pharmacother 2000; 34: 656661. https://doi.org/10.1345/aph.19315.

  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.41
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 0 0 0
Dec 2024 0 0 0
Jan 2025 0 0 0
Feb 2025 0 0 0
Mar 2025 415 8 9
Apr 2025 107 4 5
May 2025 0 0 0