View More View Less
  • 1 Vocational School of Health Services, Hacettepe University, Ankara, Turkey
  • 2 Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Abstract

Hypervirulent Klebsiella pneumoniae (hvKP) strains are associated with vigorous clinical presentation and relapses. Initially reported from Asia, these variants have spread globally and become an emerging agent of significant health threat. This study was carried out to identify hvKP strains in a previously uninvestigated region and to evaluate the impact of commonly-employed phenotypic and genotypic markers as diagnostic assays. A total of 111 blood culture isolates, collected at a tertiary care center was investigated. The hvKP strains were sought by a string test and the amplification of partial magA, rmpA, iucA and peg344. All products were characterized via sequencing. Evidence for hvKP was observed in 10.8% via iucA amplification (7.2%), string test (2.7%) and magA amplification (0.9%). Specific products were not produced by assays targeting rmpA and peg344 genes. Antibiotic susceptibility patterns compatible with possible extensive or pan-antimicrobial resistance was noted in 66.7% of the hvKP candidate strains. Capsule type in the magA positive strain was characterized as K5. We have detected hvKP in low prevalence at a region with no prior documentation. Targetting the aerobactin gene via iucA amplification provided the most accurate detection in this setting. The epidemiology of hvKP in Anatolia requires elucidation for effective control and management.

  • 1.

    Yeh KM, Kurup A, Siu LK, Koh YL, Fung CP, Lin JC, . Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J Clin Microbiol 2007; 45: 466471, https://doi.org/10.1128/JCM.01150-06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Yan Q, Zhou M, Zou M, Liu WE. Hypervirulent Klebsiella pneumoniae induced ventilator-associated pneumonia in mechanically ventilated patients in China. Eur J Clin Microbiol Infect Dis 2016; 35: 387396, https://doi.org/10.1007/s10096-015-2551-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Liu YC, Cheng DL, Lin CL. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med 1986; 146: 19131916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Lee HC, Chuang YC, Yu WL, Lee NY, Chang CM, Ko NY, . Clinical implications of hypermucoviscosity phenotype in Klebsiella pneumoniae isolates: association with invasive syndrome in patients with community-acquired bacteraemia. J Intern Med 2006; 259: 606614, https://doi.org/10.1111/j.1365-2796.2006.01641.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Fang CT, Lai SY, Yi WC, Hsueh PR, Liu KL, Chang SC. Klebsiella pneumoniae genotype K1: An emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis 2007; 45: 284293, https://doi.org/10.1086/519262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4: 107118, https://doi.org/10.4161/viru.22718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Wu MC, Lin TL, Hsieh PF, Yang HC, Wang JT. Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS One 2011; 6, https://doi.org/10.1371/journal.pone.0023500e23500.

    • Search Google Scholar
    • Export Citation
  • 8.

    Li W, Sun G, Yu Y, Li N, Chen M, Jin R, . Increasing occurrence of antimicrobial-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in China. Clin Infect Dis 2014; 58: 225232, https://doi.org/10.1093/cid/cit675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Liu YM, Li BB, Zhang YY, Zhang W, Shen H, Li H, . Clinical and molecular characteristics of emerging hypervirulent Klebsiella pneumoniae bloodstream infections in mainland China. Antimicrob Agents Chemother 2014; 58: 53795385, https://doi.org/10.1128/AAC.02523-14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Siu LK, Huang DB, Chiang T. Plasmid transferability of KPC into a virulent K2 serotype Klebsiella pneumoniae. BMC Infect Dis 2014; 14: 176, https://doi.org/10.1186/1471-2334-14-176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U, . Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol 2018; 56:pii: e00776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A Novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 2004; 199: 697705, https://doi.org/10.1084/jem.20030857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Nassif X, Sansonetti PJ. Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect Immun 1986; 54: 603608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Nassif X, Fournier JM, Arondel J, Sansonetti PJ. Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun 1989; 57: 546552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Lin TL, Lee CZ, Hsieh PF, Tsai SF, Wang JT. Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess. J Bacteriol 2008; 190: 515526, https://doi.org/10.1128/JB.01219-07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Tang HL, Chiang MK, Liou WJ, Chen YT, Peng HL, Chiou CS, . Correlation between Klebsiella pneumoniae carrying pLVPK-derived loci and abscess formation. Eur J Clin Microbiol Infect Dis 2010; 29 : 689698, https://doi.org/10.1007/s10096-010-0915-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, . A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 2018; 18: 3746, https://doi.org/10.1016/S1473-3099(17)30489-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Siu LK, Yeh KM, Lin JC, Fung CP, Chang FY. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis 2012; 11: 881887, https://doi.org/10.1016/S1473-3099(12)70205-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Chou A, Nuila RE, Franco LM, Stager CE, Atmar RL, Zechiedrich L. Prevalence of hypervirulent Klebsiella pneumoniae-associated genes rmpA and magA in two tertiary hospitals in Houston, TX, USA. J Med Microbiol 2016; 65: 10471048, https://doi.org/10.1099/jmm.0.000309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403410, https://doi.org/10.1016/S0022-2836(05)80360-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 46734680, https://doi.org/10.1093/nar/22.22.4673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 15471549, https://doi.org/10.1093/molbev/msy096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, . Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268281, https://doi.org/10.1111/j.1469-0691.2011.03570.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Marr CM, Russo TA. Hypervirulent Klebsiella pneumoniae: a new public health threat. Expert Rev Anti Infect Ther 2019; 17: 7173, https://doi.org/10.1080/14787210.2019.1555470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Liu C, Guo J. Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular epidemiology and risk factor. Ann Clin Microbiol Antimicrob 2019; 18: 4, https://doi.org/10.1186/s12941-018-0302-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Shi Q, Lan P, Huang D, Hua X, Jiang Y, Zhou J, . Diversity of virulence level phenotype of hypervirulent Klebsiella pneumoniae from different sequence type lineage. BMC Microbiol 2018; 18: 94, https://doi.org/10.1186/s12866-018-1236-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Catalán-Nájera JC, Garza-Ramos U, Barrios-Camacho H. Hypervirulence and hypermucoviscosity: Two different but complementary Klebsiella spp. phenotypes?. Virulence 2017; 8: 11111123, https://doi.org/10.1080/21505594.2017.1317412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ye M, Tu J, Jiang J, Bi Y, You W, Zhang Y, . Clinical and genomic analysis of liver abscess-causing Klebsiella pneumoniae identifies new liver abscess-associated virulence genes. Front Cell Infect Microbiol 2016; 6: 165, https://doi.org/10.3389/fcimb.2016.00165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Russo TA, Olson R, Macdonald U, Metzger D, Maltese LM, Drake EJ, . Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun 2014; 82: 23562367, https://doi.org/10.1128/IAI.01667-13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Russo TA, Olson R, MacDonald U, Beanan J, Davidson BA. Aerobactin, but not yersiniabactin, salmochelin and enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun 2015; 83: 33253333, https://doi.org/10.1128/IAI.00430-15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Pan YJ, Lin TL, Chen CT, Chen YY, Hsieh PF, Hsu CR, . Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep 2015; 5: 15573, https://doi.org/10.1038/srep15573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Ozenci H, Karaaslan A, Ozsan M. Klebsiella pneumoniae capsular type 48 isolated for the first time in Turkey. Mikrobiyol Bul 1990; 24: 9192.

    • Search Google Scholar
    • Export Citation
  • 33.

    Ozenci H, Karaaslan A, Tuncer I, Erboyaci A. Klebsiella pneumoniae capsular type 25 and type 16 isolated for the first time in Turkey. Mikrobiyol Bul 1990; 24: 9394.

    • Search Google Scholar
    • Export Citation
  • 34.

    Candan ED, Aksöz N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochim Pol 2015; 62: 867874, https://doi.org/10.18388/abp.2015_1148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Kuş H, Arslan U, Türk Dağı H, Fındık D. Investigation of various virulence factors of Klebsiella pneumoniae strains isolated from nosocomial infections. Mikrobiyol Bul 2017; 51: 329339, https://doi.org/10.5578/mb.59716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect 2018; 24: 335341, https://doi.org/10.1016/j.cmi.2017.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Zhang R, Lin D, Chan EW, Gu D, Chen GX, Chen S. Emergence of carbapenem-resistant serotype K1 hypervirulent Klebsiella pneumoniae strains in China. Antimicrob Agents Chemother 2015; 60: 709711, https://doi.org/10.1128/AAC.02173-15.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2020 0 0 0
Jun 2020 0 0 0
Jul 2020 36 31 8
Aug 2020 2 0 0
Sep 2020 18 0 0
Oct 2020 6 0 0
Nov 2020 0 0 0