View More View Less
  • 1 Department of Biotechnology, Institute of Natural Sciences, Gumushane University, Gümüşhane, Turkey
  • 2 Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, Gümüşhane, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Abstract

The aim of this study was to identify antimicrobial resistance and virulence factor genes exhibited by multidrug resistant (MDR) Acinetobacter baumannii, to analyze biofilm formation and to investigate clonal subtypes of isolate. Whole genome sequencing was done by Illumina NovaSeq 6,000 platform and multilocus sequence typing (MLST) was performed by Oxford and Pasteur typing schemes. Influence of imipenem and levofloxacin on biofilm formation was investigated in 96-well plates at 3 replicates. The strain was found to carry OXA-23, OXA-51-like, AmpC and TEM-1 beta-lactamases. The sequence of the blaOXA-51-like gene has been identified as a blaOXA-66. According to Pasteur MLST scheme the strain displayed ST2 allelic profile. However, based on Oxford MLST scheme this strain represents the new ST2121, as the gdhB gene has a single allelic mutation namely, the gdhB-227. It was determined that MDR isolate carried bap, basABCDFGHIJ, csuA/BABCDE, bauABCDEF, plcD, pgaABCD, entE, barAB, ompA, abaIR, piT2EAFTE/AUBl, fimADT, cvaC, bfmR, bfmS virulence genes. In our study imipenem induced the highest biofilm formation at a concentration of 32 µg/ml and levofloxacin at a concentration of 16 µg/ml. In conclusion, we detected a new MDR A. baumannii ST2121 clone harboring blaOXA-66 gene that has been reported for the first time in Turkey.

  • [1]

    Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med 2008; 358: 127181.

  • [2]

    World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Geneva, Switzerland: World Health Organization; 2017. p. 12.

    • Search Google Scholar
    • Export Citation
  • [3]

    Greene C, Vadlamudi G, Newton D, Foxman B, Xi C. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am J Infect Control 2016; 44: e6571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4]

    Naas T, Nordmann P. OXA-type β-lactamases. Curr Pharm Des 1999; 5: 86579.

  • [5]

    Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrob Chemother 2006; 57: 37383.

  • [6]

    Lopez-Gigosos RM, Mariscal A, Gutierrez-Bedmar M, Real M, Mariscal-López E. Carbapenem resistance in Acinetobacter baumannii is associated with enhanced survival on hospital fabrics. Acta Microbiol Immunol Hung 2019; 66: 14354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7]

    Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the bla OXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis 2010; 6: 3540.

    • Search Google Scholar
    • Export Citation
  • [8]

    Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D b-lactamases. Antimicrob Agents Chemother 2010; 54: 2438.

  • [9]

    Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin Infect Dis 2010; 51: 7984.

  • [10]

    Giske CG, Monnet DL, Cars O, Carmeli Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother 2008; 52: 81321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11]

    Bassetti M, Merelli M, Temperoni C, Astilean A. New antibiotics for bad bugs: where are we?. Ann Clin Microbiol Antimicrob 2013; 12: 22.

  • [12]

    Boucher HW, Talbot GH, Benjamin DK, Bradley J, Guidos RJ, Jones RN, . 10∗’20 progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 2013; 56: 168594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13]

    Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, . Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 2006; 6: 589601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14]

    Juhász E, Iván M, Pongrácz J, Kristóf K. Uncommon non-fermenting Gram-negative rods as pathogens of lower respiratory tract infection. Orv Hetil 2018; 159: 2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15]

    Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, . Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 2016; 4: 14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16]

    Coyne S, Courvalin P, Perichon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 2011; 55: 94753.

  • [17]

    Coyne S, Rosenfeld N, Lambert T, Courvalin P, Périchon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 54: 438993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [18]

    Qi L, Li H, Zhang C, Liang B, Li J, Wang L, . Relationship between antibiotic resistance, biofilm formation, and biofilm specific resistance in Acinetobacter baumannii. Front Microbiol 2016; 7: 483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [19]

    Youn SJ. Molecular characterization and antimicrobial susceptibility of biofilm-forming Acinetobacter baumannii clinical isolates from Daejeon, Korea. Korean J Clin Lab Sci 2018; 50: 1009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [20]

    Thummeepak R, Kongthai P, Leungtongkam U, Sitthisak S. Distribution of virulence genes involved in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates. Int Microbiol 2016; 19: 1219.

    • Search Google Scholar
    • Export Citation
  • [21]

    Ghasemi E, Ghalavand Z, Goudarzi H, Yeganeh F, Hashemi A, Dabiri H, . Phenotypic and genotypic investigation of biofilm formation in clinical and environmental isolates of Acinetobacter baumannii. Arch Clin Infect Dis 2018; 13: e12914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [22]

    Zhang D, Xia J, Xu Y, Gong M, Zhou Y, Xie L, . Biological features of biofilm-forming ability of Acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia. Clin Exp Med 2016; 16: 7380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [23]

    He X, Lu F, Yuan F, Jiang D, Zhao P, Zhu J, . Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump. Antimicrob Agents Chemother 2015; 59: 481725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [24]

    Vijayakumar S, Rajenderan S, Laishram S, Anandan S, Balaji V, Biswas I. Biofilm formation and motility depend on the nature of the Acinetobacter baumannii clinical isolates. Front Public Healt 2016; 24: 105.

    • Search Google Scholar
    • Export Citation
  • [25]

    Lopes BS, Al-Hassan L, Amyes SG. ISAba825 controls the expression of the chromosomal bla OXA-51-like and the plasmid borne bla OXA-58 gene in clinical isolates of Acinetobacter baumannii isolated from the USA. Clin Microbiol Infect 2012; 18: E44651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [26]

    Lukovic B, Gajic I, Dimkic I, Kekic D, Zornic S, Pozder T, . The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: emergence of OXA-72, OXA-23 and NDM-1-producing isolates. Antimicrob Resist Infect Control 2020; 9: 101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27]

    de Souza Gusatti C, Bertholdo LM, Otton LM, Marchetti DP, Ferreira AE, Corção G. First occurrence of bla OXA-58 in Acinetobacter baumannii isolated from a clinical sample in Southern Brazil. Braz J Microbiol 2012; 43: 2436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [28]

    Sharif M, Mirnejad R, Amirmozafari N. Molecular identification of TEM and SHV extended spectrum β-lactamase in clinical isolates of Acinetobacter baumannii from Tehran hospitals. J Gene Microb Immun 2014; 2014: 19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [29]

    Liu Y, Liu X. Detection of AmpC β-lactamases in Acinetobacter baumannii in the Xuzhou region and analysis of drug resistance. Exp Ther Med 2015; 10: 93336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [30]

    Farlow J, Nozadze M, Mitaishvili N, Kotorashvili A, Kotaria N, Arobelidze K, . Comparative genomic analysis of four multidrug resistant strains of Acinetobacter baumannii from the country of Georgia. J Glob Antimicrob Resist 2019; 21: 3638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [31]

    Jassim KA, Ghaima KK, Saadedin SMK. AdeABC efflux pump genes in multidrug resistant Acinetobacter baumannii isolates. Avicenna J Clin Microb Infec 2016; 3: e40898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [32]

    Mobasseri P, Azimi L, Salehi M, Hosseini F, Fallah F. Distribution and expression of efflux pump gene and antibiotic resistance in Acinetobacter baumannii. Arch Clin Infect Dis 2018; 13: e67143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [33]

    Knight DB, Rudin SD, Bonomo R, Rather PN. Acinetobacter nosocomialis: defining the role of efflux pumps in resistance to antimicrobial therapy, surface motility, and biofilm formation. Front Microbiol 2018; 9: 1902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [34]

    Li XZ, Poole K, Nikaido H. Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 2003; 47: 2733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [35]

    Liu YH, Kuo SC, Lee YT, Chang IC, Yang SP, Chen TL, . Amino acid substitutions of quinolone resistance determining regions in GyrA and ParC associated with quinolone resistance in Acinetobacter baumannii and Acinetobacter genomic species 13TU. J Microbiol Immunol Infect 2012; 45: 10812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [36]

    Nawfal Dagher T, Al-Bayssari C, Chabou S, Antar N, Diene SM, Azar E, . Investigation of multidrug-resistant ST2 Acinetobacter baumannii isolated from Saint George hospital in Lebanon. BMC Microbiol 2019; 19: 29.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [37]

    Abhari SS, Badmasti F, Modiri L, Aslani MM, Asmar M. Circulation of imipenem-resistant Acinetobacter baumannii ST10, ST2 and ST3 in a university teaching hospital from Tehran, Iran. J Med Microbiol 2019; 68: 8605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [38]

    Wang X, Qiao F, Yu R, Gao Y, Zong Z. Clonal diversity of Acinetobacter baumannii clinical isolates revealed by a snapshot study. BMC Microbiol 2013; 13: 234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [39]

    Liu CP, Lu HP, Luor T. Clonal relationship and the association of the ST218 strain harboring bla OXA-72 gene to mortality in carbapenem-resistant Acinetobacter baumannii bacteremia. J Microbiol Immunol Infect 2019; 52: 297303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [40]

    Altınok Ö, Boral B, Ergin A, Eser ÖK. Çok İlaca Dirençli İnvaziv Acinetobacter baumannii İzolatlarında Biyofilm ve Biyofilm İlişkili Virülans Genlerinin Varlığı. Mikrobiyol Bul 2020; 54: 409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [41]

    Zeighami H, Valadkhani F, Shapouri R, Samadi E, Haghi F. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis 2019; 19: 629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [42]

    Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 2018; 15: 227799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [43]

    Ranjbar R, Farahani A. Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrob Resist Infect Control 2019; 7: 172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [44]

    Boll JM, Tucker AT, Klein DR, Beltran AM, Brodbelt JS, Davies BW, . Reinforcing lipid A acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. mBio 2015; 6: e0047815.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 109 13 7
Dec 2020 79 0 0
Jan 2021 58 0 0
Feb 2021 46 0 0
Mar 2021 34 1 1
Apr 2021 17 4 2
May 2021 0 0 0