View More View Less
  • 1 Laboratory Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia
  • | 2 Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, 1006, Tunis, Tunisia
  • | 3 Hematology Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Abstract

The purpose of our study was to investigate the epidemiology of coagulase negative staphylococci (CoNS) responsible for bacteremia in hematopoietic stem cell transplant (HSCT) recipients and to determine the prevalence and the genetic background of methicillin resistance. The prevalence of CoNS bacteremia was 7.4% (54/728), higher in allograft (10.7%) than in autograft (4.7%) recipients. A sepsis or a septic shock were observed in 9% of cases. No deaths were attributable to CoNS bacteremia. The methicillin resistance rate was 81%. All MR-CoNS, harbored mecA gene and 90% were typeable with SCCmec typing using PCR amplification. The SCCmec type IV was the most frequent (44%). Clonal dissemination of MR- Staphylococcus epidermidis strains was limited. Our study showed a low prevalence and favorable outcome of CoNS bacteremia in HSCT recipients with limited clonal diffusion. However, they were associated with a significant rate of severe infections and a high rate of methicillin resistance, mediated by SCCmec IV element in most cases.

  • [1]

    Attman E, Aittoniemi J, Sinisalo M, Vuento R, Lyytikainen O, Karki T, et al. Etiology, clinical course and outcome of healthcare-associated bloodstream infections in patients with hematological malignancies: a retrospective study of 350 patients in a Finnish tertiary care hospital. Leuk Lymphoma 2015; 56(12): 33707. https://doi.org/10.3109/10428194.2015.1032967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2]

    Barbier F. Staphylocoques à coagulase négative: quand, comment et pourquoi sont-ils responsables d’infections ? J Anti-Infect 2015; 17(1): 1519. https://doi.org/10.1016/j.antinf.2015.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3]

    Costa SF, Barone AA, Miceli MH, Van Der Heijden IM, Soares RE, Levin AS, et al. Colonization and molecular epidemiology of coagulase-negative Staphylococcal bacteremia in cancer patients: a pilot study. Am J Infect Control 2006; 34(1): 3640. https://doi.org/10.1016/j.ajic.2005.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4]

    Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev 2014; 27(4): 870926. https://doi.org/10.1128/CMR.00109-13.

  • [5]

    Société Française de Microbiologie. REMIC : Référentiel en microbiologie médicale. 5ème édition. Paris: Société Française de Microbiologie; 2015.

    • Search Google Scholar
    • Export Citation
  • [6]

    Comité de l'Antibiogramme de La Société Française de Microbiologie. Recommandations 2019 V.1.0 Janvier. Paris: Société Française de Microbiologie; 2019.

    • Search Google Scholar
    • Export Citation
  • [7]

    Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2005; 43(10): 502633. https://doi.org/10.1128/JCM.43.10.5026-5033.2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8]

    Katayama Y, Ito T, Hiramatsu K. Genetic organization of the chromosome region surrounding mecA in clinical staphylococcal strains: role of IS431-mediated mecI deletion in expression of resistance in mecA-carrying, low-level methicillin-resistant Staphylococcus haemolyticus. Antimicrob Agents Chemother 2001; 45(7): 195563. https://doi.org/10.1128/JCM.43.10.5026-5033.2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    Oliveira DC, Milheirico C, de Lencastre H. Redefining a structural variant of staphylococcal cassette chromosome mec, SCCmec type VI. Antimicrob Agents Chemother 2006; 50(10): 34579. https://doi.org/10.1128/AAC.00629-06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [10]

    Chung M, De Lencastre H, Matthews P, Tomasz A, De Sousa MA, Camou T, et al. Molecular typing of methicillin-resistant Staphylococcus aureus by pulsed-field gel electrophoresis: comparison of results obtained in a multilaboratory effort using identical protocols and MRSA strains. Microb Drug Resist 2000; 6(3): 18998. https://doi.org/10.1089/mdr.2000.6.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11]

    Gudiol C, Garcia-Vidal C, Arnan M, Sanchez-Ortega I, Patino B, Duarte R, et al. Etiology, clinical features and outcomes of pre-engraftment and post-engraftment bloodstream infection in hematopoietic SCT recipients. Bone Marrow Transpl 2014; 49(6): 82430. https://doi.org/10.1038/bmt.2014.37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12]

    Frere P, Hermanne JP, Debouge MH, De Mol P, Fillet G, Beguin Y. Bacteremia after hematopoietic stem cell transplantation: incidence and predictive value of surveillance cultures. Bone Marrow Transpl 2004; 33(7): 7459. https://doi.org/10.1038/sj.bmt.1704414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13]

    Mikulska M, Del Bono V, Raiola AM, Bruno B, Gualandi F, Occhini D, et al. Blood stream infections in allogeneic hematopoietic stem cell transplant recipients: reemergence of Gram-negative rods and increasing antibiotic resistance. Biol Blood Marrow Transpl 2009; 15(1): 4753. https://doi.org/10.1016/j.bbmt.2008.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14]

    Cluff LE, Reynolds RC, Page DL, Breckenridge JL. Staphylococcal bacteremia and altered host resistance. Ann Intern Med 1968; 69(5): 85973. https://doi.org/10.7326/0003-4819-69-5-859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15]

    Balletto E, Mikulska M. Bacterial infections in hematopoietic stem cell transplant recipients. Mediterr J Hematol Infect Dis [en ligne] 2015 juillet [11/05/2019]; 7(1): [13 pages]. https://doi.org/10.4084/MJHID.2015.045.

    • Search Google Scholar
    • Export Citation
  • [16]

    Tacconelli E, D'Agata EMC, Karchmer AW. Epidemiological comparison of true methicillin-resistant and methicillin-susceptible coagulase-negative staphylococcal bacteremia at hospital admission. Clin Infect Dis 2003; 37(5): 6449. https://doi.org/10.1086/377207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [17]

    Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev 2014; 27(4): 870926. https://doi.org/10.1128/CMR.00109-13.

  • [18]

    Bertrand X, Lallemand S, Thouverez M, Boisson K, Talon D. Bactériémies liées aux staphylocoques à coagulase négative: incidence, niveau de résistance à la teicoplanine et épidémiologie moléculaire. Pathol Biol 2002; 50(9): 5529. https://doi.org/10.1016/S0369-8114(02)00347-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [19]

    Timsit JF. Updating of the 12th consensus conference of the Societe de Reanimation de langue francaise (SRLF): catheter related infections in the intensive care unit. Ann Fr Anesth Reanim 2005; 24(3): 31522. https://doi.org/10.1016/S0369-8114(02)00347-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [20]

    Cherifi S, Byl B, Deplano A, Nonhoff C, Denis O, Hallin M. Comparative epidemiology of Staphylococcus epidermidis isolates from patients with catheter-related bacteremia and from healthy volunteers. J Clin Microbiol 2013; 51(5): 15417. https://doi.org/10.1128/JCM.03378-12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [21]

    Yamada K, Namikawa H, Fujimoto H, Nakaie K, Takizawa E, Okada Y, et al. Clinical characteristics of methicillin-resistant coagulase-negative staphylococcal bacteremia in a tertiary hospital. Intern Med 2017; 56(7): 7815. https://doi.org/10.2169/internalmedicine.56.7715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [22]

    Ben Hassen A, Gréco A, Jouaihia W, Leclercq R. Profil épidémiologique des souches de Staphylococcus epidermidis méticilline résistant de sensibilité diminuée à la teicoplanine et isolées chez des patients neutropéniques au Centre National de Greffe de Moelle Osseuse à Tunis. Pathol Biol 2001; 49(8): 63440. https://doi.org/10.1016/S0369-8114(01)00222-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [23]

    García P, Benítez R, Lam M, Salinas AM, Wirth H, Espinoza C, et al. Coagulase-negative staphylococci: clinical, microbiological and molecular features to predict true bacteremia. J Med Microbiol 2004; 53(1): 6772. https://doi.org/10.1099/jmm.0.04994-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [24]

    Karakullukçu A, Kuşkucu M A, Ergin S, Aygün G, Midilli K, Küçükbasmaci Ö. Determination of clinical significance of coagulase-negative staphylococci in blood cultures. Diag Microbiol Infect Dis 2017; 87: 291294. https://doi.org/10.1016/j.diagmicrobio.2016.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [25]

    Puerta-Alcalde P, Cardozo C, Suarez-Lled M, Rodríguez-Nú∼nez O, Morata L, Feher C et al. Current time-to-positivity of blood cultures in febrile neutropenia: a tool to be used in stewardship de-escalation strategies. Clin Microbiol Infect 2018; 25: 447453. https://doi.org/10.1016/j.cmi.2018.07.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [26]

    Morioka S, Ichikawa M, Mori K, Kurai H. Coagulase-negative staphylococcal bacteraemia in cancer patients. Time to positive culture can distinguish bac-teraemia from contamination. Inf Dis 2018; 50(9): 6605. https://doi.org/10.1016/j.cmi.2018.07.0260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27]

    Lafaurie M, Jaureguy F, Lefort A, Lesprit P, Mainardi JL. Prescriptions of glycopeptides in 10 university hospitals in Paris area: a 1-day survey. Rev Med Interne 2011; 32(3): 14953. https://doi.org/10.1016/j.revmed.2010.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [28]

    Stahl J-P. Actualités sur les infections sévères à gram positif. Médecine Mal Infect 2010; 40(Suppl. 9): H1–H6. https://doi.org/10.1016/S0399-077X(10)70002-0.

    • Search Google Scholar
    • Export Citation
  • [29]

    Fantin B. Les nouveaux antistaphylococciques. Ann Fr Anesth Réanimation 2002; 21(5): 42430. https://doi.org/10.1016/S0750-7658(02)00630-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [30]

    Miragaia M, Thomas JC, Couto I, Enright MC, De Lencastre H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol 2007; 189(6): 254052. https://doi.org/10.1016/S0750-7658(02)00630-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [31]

    Zhanel GG, Adam HJ, Baxter MR, Fuller J, Nichol KA, Denisuik AJ, et al. Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: results of the CANWARD 2007-11 study. J Antimicrob Chemother 2013; 68(Suppl. 1): I7I22. https://doi.org/10.1016/S0750-7658(02)00630-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [32]

    Mendes RE, Sader HS, Jones RN. Activity of telavancin and comparator antimicrobial agents tested against Staphylococcus spp. isolated from hospitalised patients in Europe (2007–2008). Int J Antimicrob Agents 2010; 36(4): 3749. https://doi.org/10.1016/j.ijantimicag.2010.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [33]

    Jemili-Ben Jomaa M, Boutiba-Ben Boubaker I, Ben Redjeb S. Identification of staphylococcal cassette chromosome mec encoding methicillin resistance in Staphylococcus aureus isolates at Charles Nicolle Hospital of Tunis. Pathol Biol (Paris) 2006; 54(8–9): 4535. https://doi.org/10.1016/j.patbio.2006.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [34]

    Mastouri M, Nour M, Ben Nejma M, Bouallegue O, Hammami M, Khedher M. Antibiotics resistance of meticilline-resistant Staphylococcus aureus: detection of the first glycopeptides low sensibility strains in Tunisia. Pathol Biol (Paris) 2006; 54(1): 336. https://doi.org/10.1016/j.patbio.2004.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [35]

    Ben Nejma M, Mastouri M, Frih S, Sakly N, Ben Salem Y, Nour M. Molecular characterization of methicillin-resistant Staphylococcus aureus isolated in Tunisia. Diagn Microbiol Infect Dis 2006; 55(1): 216. https://doi.org/10.1016/j.diagmicrobio.2005.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [36]

    Gordon RJ, Miragaia M, Weinberg AD, Lee CJ, Rolo J, Giacalone JC, et al. Staphylococcus epidermidis colonization is highly clonal across US cardiac centers. J Infect Dis 2012; 205(9): 13918. https://doi.org/10.1093/infdis/jis218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [37]

    Muldrew KL, Tang YW, Li H, Stratton CW. Clonal dissemination of Staphylococcus epidermidis in an oncology ward. J Clin Microbiol. 2008; 46(10): 33916. https://doi.org/10.1128/JCM.00115-08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [38]

    Cimiotti JP, Wu F, Della-Latta P, Nesin M, Larson E. Emergence of resistant staphylococci on the hands of new graduate nurses. Infect Control Hosp Epidemiol 2004; 25(5): 4315. https://doi.org/10.1086/502418.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 91 5 4
Jun 2021 30 7 2
Jul 2021 0 0 0