View More View Less
  • 1 Biosafety Level 3 and Research Laboratory, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10 000, Morocco
  • 2 Laboratory of Medical Bacteriology, National Institute of Hygiene in Rabat, 27, Avenue Ibn Batouta, B.P. 769, Rabat 10 000, Morocco
  • 3 Laboratory of Microbiology, Cheick-Zaid University Hospital, University Internationale Abulcasis of Sciences and Health in Rabat, B.P. 6533, Avenue Allal El Fassi, Madinat Al Irfane, Rabat 10 000, Morocco
  • 4 Regional laboratory of Medical Bacteriology, Mohamed V Hospital in Tangier. 1 Avenue Moulay Rachid, Tangier 90100, Morocco
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Abstract

Bacteriological cultures from cerebrospinal fluids (CSF) have less sensitivity and specificity compared to quantitative PCR (RT-PCR), and multiple facts still conduct to the increase of negative culture. The aims of this study are to determine the molecular epidemiology and the simultaneous detection of bacterial meningitis in Morocco by using RT-PCR and compared this molecular approach with culture method to improve the etiological diagnosis of meningitis. The CSFs were collected over one-year period in 2018 in different hospitals covering all regions of the Kingdom of Morocco, from patients with suspected meningitis. The results showed the confirmation rate per culture recorded a rate of 33% and the RT-PCR of 70%. Molecular epidemiology is predominant of Neisseria meningitidis followed by Streptococcus pneumoniae and a dramatic reduction in meningitis due to Haemophilus influenzae following the introduction of conjugate vaccine in 2007. Also, the epidemiological profile shows a sex ratio M/F of 1.4 and a median age of 2 years. The national distribution showed a predominant of meningococcal disease followed by pneumococcal disease, especially a dominance of N. meningitidis over S. pneumoniae in two regions and a slight predominance of S. pneumoniae in the other two regions over N. meningitidis. Our research shows that culture in our country has less sensitivity and specificity than RT-PCR in diagnosis of bacterial meningitis and that molecular biology technique at bacteriology laboratories is desirable for diagnosis, early management of meningitis cases and in the context of the surveillance of meningitis in Morocco in parallel with culture.

  • 1.

    Boni-Cisse C, Jarju S, Bancroft RE, Lepri NA, Kone H, Kofi N, Etiology of bacterial meningitis among children< 5 years old in Côte d’Ivoire: findings of hospital-based surveillance before and after pneumococcal conjugate vaccine introduction. Clin Infect Dis 2019; 69: S114S120. https://doi.org/10.1093/cid/ciz475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol 2001; 39: 15531558. https://doi.org/10.1128/JCM.39.4.1553-1558.2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Pedro LGF, Boente RF, Madureira DJ, Matos JA, Rebelo CM, Igreja RP, Diagnosis of meningococcal meningitis in Brazil by use of PCR. Scand J Infect Dis 2007; 39: 2832. https://doi.org/10.1080/00365540600904761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Borrow R, Caugant DA, Ceyhan M, Christensen H, Dinleyici EC, Findlow J, Meningococcal disease in the Middle East and Africa: findings and updates from the global meningococcal initiative. J Infect 2017; 75: 111. https://doi.org/10.1016/j.jinf.2017.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Khater WS, Elabd SH. Identification of common bacterial pathogens causing meningitis in culture-negative cerebrospinal fluid samples using real-time polymerase chain reaction. Int J Microbiol 2016; 2016: 4197187. https://doi.org/10.1155/2016/4197187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Favaro M, Savini V, Favalli C, Fontana C. A multi-target real-time PCR assay for rapid identification of meningitis-associated microorganisms. Mol Biotechnol 2013; 53: 7479. https://doi.org/10.1007/s12033-012-9534-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Seth R, Murthy PSR, Sistla S, Subramanian M, Tamilarasu K. Rapid and accurate diagnosis of acute pyogenic meningitis due to streptococcus pneumoniae, haemophilus influenzae type b and neisseria meningitis using a multiplex PCR assay. J Clin Diagn Res 2017; 11: FC01FC04. https://doi.org/10.7860/JCDR/2017/28114.10532.

    • Search Google Scholar
    • Export Citation
  • 8.

    Albuquerque RC, Moreno ACR, dos Santos SR, Ragazzi SLB, Martinez MB. Multiplex-PCR for diagnosis of bacterial meningitis. Brazilian J Microbiol 2019; 50: 435443. https://doi.org/10.1007/s42770-019-00055-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Khumalo J, Nicol M, Hardie D, Muloiwa R, Mteshana P, Bamford C. Diagnostic accuracy of two multiplex real-Time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting. PLoS One 2017; 12: e0173948. https://doi.org/10.1371/journal.pone.0173948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Castillo D, Harcourt B, Hatcher C, Jackson M, Katz L, Mair R, Laboratory methods for the diagnosis of meningitis caused by neisseria meningitidis, streptococcus pneumoniae, and haemophilus influenza; WHO Manual; 2011.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ikken Y, Charof R, Benaouda A, Hilali F, Akkaoui S, Elouennass M, Epidemiology and antibiotic resistance profile of bacterial meningitis in Morocco from 2015 to 2018. Acta Microbiol Immunol Hung 2020; 67: 243251. https://doi.org/10.1556/030.2020.01222.

    • Search Google Scholar
    • Export Citation
  • 12.

    Page AL, Coldiron ME, Gamougam K, Acyl MA, Tamadji M, Lastrucci C, Four years of case-based surveillance of meningitis following the introduction of MenAfriVac in Moissala, Chad: lessons learned. Trop Med Int Heal 2017; 22: 15611568. https://doi.org/10.1111/tmi.12987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Polkowska A, Toropainen M, Ollgren J, Lyytikaïnen O, Nuorti JP. Bacterial meningitis in Finland, 1995–2014: a population-based observational study. BMJ Open 2017; 7. https://doi.org/10.1136/bmjopen-2016-015080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Ngocho JS, Magoma B, Olomi GA, Mahande MJ, Msuya SE, de Jonge MI, Effectiveness of pneumococcal conjugate vaccines against invasive pneumococcal disease among children under five years of age in Africa: a systematic review. PLoS One 2019; 14. https://doi.org/10.1371/journal.pone.0212295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Braikat M, Barkia A, Mdaghri N El, Rainey JJ, Cohen AL, Teleb N. Vaccination with Haemophilus influenzae type b conjugate vaccine reduces bacterial meningitis in Morocco. Vaccine 2012; 30: 25942599. https://doi.org/10.1016/j.vaccine.2012.01.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Wahl B, O’Brien KL, Greenbaum A, Majumder A, Liu L, Chu Y, Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. Lancet Glob Heal 2018; 6: e744e757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Barkia A, Braikat M, Charof R, Souadiya H, El Idrissi MH, Moumni H, Guide de la lutte contre les méningites bactériennes communautaires. Guideline on the Community Bacterial Meningitis Control. MoH Moro,WHO 2010; 78: 178.

    • Search Google Scholar
    • Export Citation
  • 18.

    Engo SMI. Dynamique spatio-temporelle et écologie des méningites bactériennes en dehors de la ceinture de la méningite en Afrique: cas de la République démocratique du Congo. Université Montpellier; Université de Kinshasa; 2019.

    • Search Google Scholar
    • Export Citation
  • 19.

    Nicolas P. Épidémies de méningite à méningocoques dans la ceinture de la méningite (1995–2011) et introduction du vaccin méningococcique a conjugué. Med Sante Trop 2012; 22: 246258. https://doi.org/10.1684/mst.2012.0086.

    • Search Google Scholar
    • Export Citation
  • 20.

    Devi U, Bora R, Malik V, Deori R, Gogoi B, Das JK, Bacterial aetiology of neonatal meningitis: a study from north-east India. Indian J Med Res 2017; 145: 138143. https://doi.org/10.4103/ijmr.IJMR_748_15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Vallejo JG, Cain AN, Mason EO, Kaplan SL, Hultén KG. Staphylococcus aureus central nervous system infections in children. Pediatr Infect Dis J 2017; 36: 947951. https://doi.org/10.1097/INF.0000000000001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Ouchenir L, Renaud C, Khan S, Bitnun A, Boisvert AA, McDonald J, The epidemiology, management, and outcomes of bacterial meningitis in infants. Pediatrics 2017; 140. https://doi.org/10.1542/peds.2017-0476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Zhao Z, Yu JL, Zhang HB, Li JH, Li ZK. Five-year multicenter study of clinical tests of neonatal purulent meningitis. Clin Pediatr (Phila) 2018; 57: 389397. https://doi.org/10.1177/0009922817728699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Mothershed EA, Sacchi CT, Whitney AM, Barnett GA, Ajello GW, Schmink S, Use of real-time PCR to resolve slide agglutination discrepancies in serogroup identification of Neisseria meningitidis. J Clin Microbiol 2004; 42: 320328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Messmer TO, Sampson JS, Stinson A, Wong B, Carlone GM, Facklam RR. Comparison of four polymerase chain reaction assays for specificity in the identification of Streptococcus pneumoniae. Diagn Microbiol Infect Dis 2004; 49: 249254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Janson H, Ruan M, Forsgren A. Limited diversity of the protein D gene (hpd) among encapsulated and nonencapsulated Haemophilus influenzae strains. Infect Immun 1993; 61: 45464552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Song X-M, Forsgren A, Janson H. The gene encoding protein D (hpd) is highly conserved among Haemophilus influenzae type b and nontypeable strains. Infect Immun 1995; 63: 696699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Başpınar , Dayan S, Bekçibaşı M, Tekin R, Ayaz C, Deveci Ö, Comparison of culture and PCR methods in the diagnosis of bacterial meningitis. Brazilian J Microbiol 2017; 48: 232236. https://doi.org/10.1016/j.bjm.2016.06.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    de Almeida SM, Dalla Costa LM, Siebra C, Arend LNVS, Nogueira K da S. Validation of multiplex PCR for the diagnosis of acute bacterial meningitis in culture negative cerebrospinal fluid. Arq Neuropsiquiatr 2019; 77: 224231. https://doi.org/10.1590/0004-282x20190028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Wu HM, Cordeiro SM, Harcourt BH, Carvalho MGS, Azevedo J, Oliveira TQ, Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis. BMC Infect Dis 2013; 13. https://doi.org/10.1186/1471-2334-13-26.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Bryant PA, Li HY, Zaia A, Griffith J, Hogg G, Curtis N, Prospective study of a real-time PCR that is highly sensitive, specific, and clinically useful for diagnosis of meningococcal disease in children. J Clin Microbiol 2004; 42: 29192925. https://doi.org/10.1128/JCM.42.7.2919-2925.2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Poplin V, Boulware DR, Bahr NC. Methods for rapid diagnosis of meningitis etiology in adults. Biomark Med 2020; 14: 459479. https://doi.org/10.2217/bmm-2019-0333.

    • Search Google Scholar
    • Export Citation
  • 33.

    Seki M, Kilgore PE, Kim EJ, Ohnishi M, Hayakawa S, Kim DW. Loop-mediated isothermal amplification methods for diagnosis of bacterial meningitis. Front Pediatr 2018; 6. https://doi.org/10.3389/fped.2018.00057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    D’Inzeo T, Menchinelli G, De Angelis G, Fiori B, Liotti FM, Morandotti GA, Implementation of the eazyplex(®) CSF direct panel assay for rapid laboratory diagnosis of bacterial meningitis: 32-month experience at a tertiary care university hospital. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 2020; 39: 18451853. https://doi.org/10.1007/s10096-020-03909-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Karrasch M, Eisenach S, Vogel U, Zinke J, Witte OW, Günther A, Value of the eazyplex® CSF direct assay in rapid diagnosis of invasive meningococcal disease – case report. Acta Microbiol Immunol Hungarica AMicr 2018; 65: 309315. https://doi.org/10.1556/030.65.2018.021.

    • Search Google Scholar
    • Export Citation
  • 36.

    Döring G, Unertl K, Heininger A. Validation criteria for nucleic acid amplification techniques for bacterial infections. Clin Chem Lab Med n.d; 46: 909918. https://doi.org/10.1515/CCLM.2008.152.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0
Jan 2021 14 2 1
Feb 2021 48 3 2
Mar 2021 31 0 0
Apr 2021 5 1 0