View More View Less
  • 1 Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Nigeria
  • | 2 Pathogenic Microbiology Laboratory, Department of Microbiology, University of Ibadan, Nigeria
  • | 3 Microbial Physiology and Biochemistry Laboratory, Department of Microbiology, University of Ibadan, Nigeria
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Abstract

Infection of the urinary tract ranks as one of the most common infections affecting people worldwide and its treatment is made complicated by the rising incidence of antibiotic resistance. This study aimed to detect extended spectrum beta-lactamase (ESBL) genes and antibiotic resistance profile of uropathogenic Escherichia coli (E. coli) recovered from patients attending a University Teaching hospital in Nigeria. Uropathogenic E. coli isolates were obtained from the culture collection of Department of Microbiology and Parasitology of the University Teaching hospital for a period of four months (October 2019–January, 2020). Antibiotic susceptibility testing was done using the disc diffusion method while phenotypic ESBL production was detected using double disc synergy test (DDST). Detection of β-lactamase genes was done using Real-Time PCR. Forty-nine E. coli isolates were recovered from 120 urine samples, with 24 (49%) being ESBL positive. The resistance to antibiotics in the ESBL producers was: ciprofloxacin (100%), cefotaxime (100%), cefpodoxime (100%), tetracycline (95.7%), ceftazidime (56.7%), amoxicillin-clavulanate (50%), gentamicin (33.3%), and imipenem (0%). All the ESBL producers carried blaTEM, blaCTX-M-1 and blaCTX-M-9, 75% (18/24) carried blaSHV, while blaCTX-M-2, blaCTX-M-8 and blaCTX-M-25 groups were detected in 20.8% (5/24) of the isolates. There was co-occurrence of CTX-M, SHV and TEM β-lactamases in 79.2% (19/24) isolates, while five isolates (20.8%) co-harbored blaCTX-M and blaTEM. This study showed a high level of multidrug resistance and ESBL gene carriage in uropathogenic E. coli obtained in this study, suggesting a likely review of therapeutic options in the treatment of UTI to clamp down on the rising cases of antibiotic resistance.

  • [1]

    Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended spectrum beta- lactamase (ESBL)- producing E. coli compared to non-ESBL- producing E. coli. J Infect 2007; 55: 254259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2]

    Kattel HP, Acharya J, Mishra SK, Rijal BP, Pokhrel BM. Bacteriology of urinary tract infection among patients attending Tribhuvan University teaching hospital Kathmandu, Nepal. J Nepal Assoc Med Lab Sci 2008; 9: 2529.

    • Search Google Scholar
    • Export Citation
  • [3]

    Raza S, Pandey S, Bhatt CP. Microbiological analysis of isolates in Kathmandu medical college teaching hospital, Kathmandu, Nepal. Kathmandu Univ Med J (Kumj) 2012; 9: 295297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4]

    Hicklinsg DR, Nitti VW. Management of recurrent urinary tract infections in healthy adult women. Rev Urol 2013; 15: 4148.

  • [5]

    Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13: 269284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol 2004; 2: 123140.

  • [7]

    Zhang L, Foxman B. Molecular epidemiology of Escherichia coli mediated urinary tract infections. Front Biosci 2003; 8: 235244.

  • [8]

    Kucheria R, Dasgupta P, Sacks S, Khan M, Sheerin N. Urinary tract infections: new insights into a common problem. Postgrad Med J 2005; 81: 8386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    Foxman B. The epidemiology of the urinary tract infection. Nat Rev Urol 2010; 7: 653660.

  • [10]

    Croxall G, Weston V, Joseph S Manning G, Cheetham P, Mgenally A. Increased human pathogenic potential of Escherichia coli from polymicrobial urinary tract infections in comparison to isolates from monomicrobial culture samples. J Med Microbiol 2011; 60:102109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11]

    Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum ß-lactamases (ESBLs) in the community. J Antimicrob Chemother 2005; 56: 5259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12]

    Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Herman L. Broad spectrum beta-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev 2010; 34: 295316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13]

    Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V. Intercontinental emergence of Escherichia coli clone O25: H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 61: 273281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14]

    Cant´on R, Coque TM. CTX-M ß-lactamase pandemic. Curr Opin Microbiol 2006; 9: 466475.

  • [15]

    Peirano G, Pitout JDD. Molecular epidemiology of Escherichia coli producing CTX-M [beta]-lactamases: the worldwide emergence of clone ST131 O25: H4. Int J Antimicrob Agents 2010; 3:316321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16]

    Accogli M, Giani T, Monaco M. Emergence of Escherichia coli ST131 sub-clone H30 producing VIM-1 and KPC-3 carbapenemases, Italy. J Antimicrob Chemother 2014; 69: 22932296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [17]

    Cai JC, Zhang R, Hu YY, Zhou HW, Chen GX. Emergence of Escherichia coli sequence type 131 isolates producing KPC-2 carbapenemase in China. Antimicrob Agents Chemother 2014; 58: 11461152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [18]

    Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community associated strain. J Antimicrob Chemother 2011; 66: 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [19]

    Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45, 4, 493496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [20]

    Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing 27th CLSI supplement M100 (Wayne: Clinical and Laboratory Standards Institute) 2018.

    • Search Google Scholar
    • Export Citation
  • [21]

    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. . Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [22]

    Janezic JK, Ferry B, Hendricks EW, Janiga BA, Johnson T, Murphy S, et al. . Phenotypic and genotypic characterization of Escherichia coli isolated from untreated surface waters. Open Microbiol J 2013; 7: 919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [23]

    Adekanmbi AO, Adeleke OJ, Aremu OO, Olaposi AV. Molecular characterization, antibiogram and distribution of zntA gene in zinc-resistant Escherichia coli population recovered from anthropogenically-influenced surface water sources in Nigeria. Meta Gene 2020a; 26 (2020), 100789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [24]

    Centre for Disease Control and Prevention (CDC). Multiplex real-time PCR detection of Klebsiella pneumoniae Carbapenemase (KPC) and New Delhi metallo-β-lactamase (NDM-1) 2011.

    • Search Google Scholar
    • Export Citation
  • [25]

    Leski T, Vora GJ, Taitt CR. Multidrug resistance determinants from NDM-1-producing Klebsiella pneumoniae in the USA. Int J Antimicrob Agents 2012; 40: 282284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [26]

    Roschanski N, Fischer J, Guerra B., Roesler U. Development of a real-time PCR for the rapid detection of the predominant Beta-Lactamase genes CTX-M, TEM-and CIT-type AMPCs in Enterobacteriaceae. Plos One 2014; 9(7): e100956. https://doi.org/10.1371/journal. pone.0100956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27]

    Yadav KK, Adhikari N, Khadka R, Pant AD, Shah B. Multidrug resistant Enterobacteriaceae and extended-spectrum beta-lactamase producing Escherichia coli: a cross-sectional study in National Kidney Center, Nepal. Antimicrob Resist Infect Control 2015; 4: 1, 42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [28]

    Paterson D. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect 2000; 6: 9, 460463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [29]

    Das B, Mittal N, Goswami R, Adhana D, Rathore N. Prevalence of multidrug resistance (MDR) and extended spectrum beta-lactamases (ESBLs) among uropathogenic Escherichia coli isolates from female patients in a tertiary care hospital in North. India 2018; 7(12): 50315036.

    • Search Google Scholar
    • Export Citation
  • [30]

    Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. The Am J Med 2002; 113: 1, 513.

  • [31]

    Hu X, Shi YN, Zhang P, Miao M, Zhang T, Jiang B. d-Mannose: properties, production, and applications: an overview. Comprehen Rev Food Sci Food Saf 2016; 15: 773-785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [32]

    Cove SA, Almond M. Management of urinary tract infections in the elderly. Trends Urology, Gynaecol Sex Health 2007; 12: 4, 3134.

  • [33]

    Bouchillon S, Johnson B, Hoban D, et al. . Determining incidence of extended-spectrum β-lactamase producing Enterobacteriaceae, vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus in 38 centres from 17 countries: the PEARLS study 2001–2002. Int J Antimicrob Agents 2004; 24: 2, 119124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [34]

    Celik AD, Yulugkural Z, Kuloglu F, et al. . CTX-M type extended-spectrum β-lactamases in Escherichia coli isolates from community acquired upper urinary tract infections at a university in the European part of Turkey. J Microbiol Immunol Infect 2010; 43, 2, 163167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [35]

    Simner PJ, Zhanel GG, Pitout J, et al. . Prevalence and characterization of extended-spectrum β-lactamase–and AmpC β-lactamase– producing Escherichia coli: results of the CANWARD 2007–2009 study. Diagn Microbiol Infect Dis 2011; 69, 3, 326334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [36]

    Hansen DS, Schumacher H, Hansen F, et al. . Extended-spectrum β-lactamase (ESBL) in Danish clinical isolates of Escherichia coli and Klebsiella pneumoniae: prevalence, β-lactamase distribution, phylogroups, and co-resistance. Scand J Infect Dis 2012; 44, 3, 174181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [37]

    Pathak A, Marothi Y, Kekre V, Mahadik K, Macaden R, Lundborg CS. High prevalence of extended-spectrum β-lactamase-producing pathogens: results of a surveillance study in two hospitals in Ujjain, India. Infect Drug Resist 2012; 5: 6573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [38]

    Alqasim A, Abu Jaffal A, Alyousef AA. Prevalence of multidrug resistance and extended-spectrum β-lactamase carriage of clinical uropathogenic Escherichia coli isolates in Riyadh, Saudi Arabia. Int J Microbiol 2018; 1-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [39]

    Pandit R, Awal B, Shrestha SS, Joshi G, Rijal B, Parajuli NP. Extended-spectrum β-lactamase (ESBL) genotypes among multidrug-resistant uropathogenic Escherichia coli clinical isolates from a teaching hospital of Nepal. Interdiscip Perspect Infect Dis 2020; 8. https://doi.org/10.1155/2020/6525826.

    • Search Google Scholar
    • Export Citation
  • [40]

    Bakshi R, Kumar V, Kansal P, Kaur S. Detection of extended-spectrum beta lactamases and AmpC beta lactamases producing uropathogenic Escherichia coli in a tertiary care hospital 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [41]

    Zorgani A, Almagatef A, Sufya N, Bashein A, Tubbal A. Detection of CTX-M-15 among uropathogenic Escherichia coli isolated from five major hospitals in Tripoli, Libya. OMJ 2017; 32: 322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [42]

    Mohajeri P., Darfarin G., Farahani A. Genotyping of ESBL producing uropathogenic Escherichia coli in West of Iran. Int J Microbiol 2014; 6. https://doi.org/10.1155/2014/276941.

    • Search Google Scholar
    • Export Citation
  • [43]

    Nwafia IN, Ohanu ME, Ebede SO, et al. Molecular detection and antibiotic resistance pattern of extended-spectrum beta-lactamase producing Escherichia coli in a Tertiary Hospital in Enugu, Nigeria. Ann Clin Microbiol Antimicrob 2019; 18: 41. https://doi.org/10.1186/s12941-019-0342-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [44]

    Gündoğdu A, Jennison AV, Smith HW, Stratton H, Katouli M. Extended-spectrum β-lactamase producing Escherichia coli in hospital wastewaters and sewage treatment plants in Queensland, Australia. Can J Microbiol 2013; 59: 737745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [45]

    Poirrel L, Leviandier C, Nordmann P. Prevalence and genetic analysis of plasmid-mediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French University Hospital. Antimicrob Agents Chemother 2006; 50: 3992-3997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [46]

    Adekanmbi AO, Akinpelu MO, Olaposi AV, Oyelade AA. Diversity of extended-spectrum beta-lactamase (ESBL) genes in Escherichia coli isolated from wastewater generated by a sick bay located in a university health care facility. Gene Rep 2020b; 20(2020): 100738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [47]

    Edwards JR, Betts MJ. Carbapenems: the pinnacle of the β-lactam antibiotics or room for improvement? J Antimicrob Chemother 2000; 45: 14.

  • [48]

    Zhanel GG, Wiebe R, Dilay L, Thomson K, Rubinstein E, Hoban DJ, et al. . Comparative review of the carbapenems, Drugs 2007; 67: 1027-1052.

  • [49]

    Halaji M, Shahidi S, Atapour A, Ataei B, Feizi A, Havaei SA. Characterization of extended-spectrum β-lactamase-producing uropathogenic Escherichia coli among Iranian kidney transplant patients. Infect Drug Resist 2020; 13: 14291437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [50]

    Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N. Genotypic and phenotypic profiles of Escherichia coli isolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India. Antimicrob Agents Chemother 2014; 58: 72407249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [51]

    Pouget JG, Coutinho FJ, Reid-Smith RJ, Boerlin P. Characterization of blaSHV genes on plasmids from Escherichia coli and Salmonella enterica isolates from Canadian food animals (2006-2007). Appl Environ Microbiol 2013; 79: 38643866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [52]

    Maravic A, Skocibusic M, Cvjetan S, Samanic I, Fredotovic Z, Puizina J. Prevalence and diversity of extended-spectrum-beta-lactamase-producing Enterobacteriaceae from marine beach waters. Mar Pollut Bull. 2015; 90: 6067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [53]

    Sana T, Rami K, Racha B, Fouad D, Marcel A, Hassan M. Detection of genes TEM, OXA, SHV and CTX-M in 73 clinical isolates of Escherichia coli producers of extended-spectrum beta-lactamases and determination of their susceptibility to antibiotics. Int Arab J Antimicrob Agents 2011; 10: 3823.

    • Search Google Scholar
    • Export Citation
  • [54]

    Liakopoulos A, Mevius DJ, Olsen B, Bonnedahl J. The colistin resistance mcr-1 gene is going wild. J Antimicrob Chemother 2016; 71(8): 2335-2336.

  • [55]

    Gundran RS, Cardenio PA, Villanueva MA, Sison FB, Benigno CC, Kreausukon K. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended-spectrum [beta] - lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Vet Res 2019; 15: 1.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 190 4 6
Jun 2021 63 2 0
Jul 2021 0 0 0