View More View Less
  • 1 Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece
  • | 2 Laboratory of Food Hygiene-Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece
  • | 3 Laboratory of Safety and Quality of Milk and Dairy Products, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) constitutes a constant threat for the public health. Aim of the present study was to analyse the whole genome sequences of two MRSA strains belonging to Staphylococcus protein A (spa) type t127 isolated from humans working in two distantly located dairy production farms in Greece.

MRSA strains were isolated from the nasal cavity of a food handler in a milk industry in Epirus, northwestern Greece (E-MRSA), and a person working in a cattle farm in Thrace, northeastern Greece (T-MRSA). Whole genome sequences taken using next generation sequencing were analysed for resistance and virulence genes applying various bioinformatic tools.

Both isolates were assigned to ST1-IVa-t127 type, and they were transferring genes conferring resistance to tetracycline, β-lactams, and aminoglycosides; T-MRSA was carrying additional genes leading to macrolide, lincosamide and streptogramin B (MLSB) resistance. Both isolates were carrying three plasmid replicon types, rep5, rep7 and rep16, while T-MRSA harboured also rep10 and rep15. E-MRSA carried scn and sak genes which were absent from T-MRSA.

In conclusion, the genetic characterization of two unrelated ST1-IVa-t127 MRSA strains isolated from humans in close contact with livestock in Greece can be used as basis for further epidemiological and evolutionary studies.

  • 1.

    Johnson AP, Pearson A, Duckworth G. Surveillance and epidemiology of mrsa bacteraemia in the UK. J Antimicrob Chemother 2005; 56: 45562.

  • 2.

    Kluytmans-Vandenbergh MF, Kluytmans JA. Community-acquired methicillin-resistant Staphylococcus aureus: current perspectives. Clin Microbiol Infect 2006; 12: 915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Mascaro V, Leonetti M, Nobile CGA, Barbadoro P, Ponzio E, Recanatini C, et al. . Prevalence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) among farm and slaughterhouse workers in Italy. J Occup Environ Med 2018; 60: 41625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 2005; 11: 19656.

  • 5.

    Nemati M, Hermans K, Lipinska U, Denis O, Deplano A, Struelens M, et al. . Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: first detection of livestock-associated methicillin-resistant strain ST398. Antimicrob Agents Chemother 2008; 52: 38179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Larsen J, Petersen A, Larsen AR, Sieber RN, Stegger M, Koch A, et al. . Emergence of livestock-associated methicillin-resistant Staphylococcus aureus bloodstream infections in Denmark. Clin Infect Dis 2017; 65: 10726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hatcher SM, Rhodes SM, Stewart JR, Silbergeld E, Pisanic N, Larsen J, et al. . The prevalence of antibiotic-resistant Staphylococcus aureus nasal carriage among industrial hog operation workers, community residents, and children living in their households: North Carolina, USA. Environ Health Perspect 2017; 125: 5609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sun J, Yang M, Sreevatsan S, Bender JB, Singer RS, Knutson TP, et al. . Longitudinal study of Staphylococcus aureus colonization and infection in a cohort of swine veterinarians in the united states. BMC Infect Dis 2017; 17: 690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Strommenger B, Kettlitz C, Weniger T, Harmsen D, Friedrich AW, Witte W. Assignment of Staphylococcus isolates to groups by spa typing, SmaI macrorestriction analysis, and multilocus sequence typing. J Clin Microbiol 2006; 44: 253340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Asadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, van Belkum A, Asadollahi K, et al. . Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and-susceptible Staphylococcus aureus around the world: a review. Front Microbiol 2018; 9: 163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bosch T, van Luit M, Pluister GN, Frentz D, Haenen A, Landman F, et al. . Changing characteristics of livestock-associated meticillin-resistant Staphylococcus aureus isolated from humans – emergence of a subclade transmitted without livestock exposure, The Netherlands, 2003 to 2014. Euro Surveill 2016; 21: 30236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kaya H, Hasman H, Larsen J, Stegger M, Johannesen TB, Allesoe RL, et al. . SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018; 3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 2000; 38: 100815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Humphreys H, Coleman DC. Contribution of whole-genome sequencing to understanding of the epidemiology and control of meticillin-resistant Staphylococcus aureus. J Hosp Infect 2019; 102: 18999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Sarrou S, Malli E, Tsilipounidaki K, Florou Z, Medvecky M, Skoulakis A, et al. . MLSb-resistant Staphylococcus aureus in central Greece: Rate of resistance and molecular characterization. Microb Drug Resist 2019; 25: 54350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Baig S, Rhod Larsen A, Martins Simoes P, Laurent F, Johannesen TB, Lilje B, et al. . Evolution and population dynamics of clonal complex 152 community-associated methicillin-resistant Staphylococcus aureus. mSphere 2020; 5: e0022620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Monecke S, Slickers P, Gawlik D, Muller E, Reissig A, Ruppelt-Lorz A, et al. . Molecular typing of ST239-MRSA-III from diverse geographic locations and the evolution of the SCCmec III element during its intercontinental spread. Front Microbiol 2018; 9: 1436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Papadopoulos P, Papadopoulos T, Angelidis AS, Boukouvala E, Zdragas A, Papa A, et al. . Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol 2018; 69: 4350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Papadopoulos P, Angelidis AS, Papadopoulos T, Kotzamanidis C, Zdragas A, Papa A, et al. . Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in bulk tank milk, livestock and dairy-farm personnel in north-central and north-eastern Greece: prevalence, characterization and genetic relatedness. Food Microbiol 2019; 84: 103249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. . Resfinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75: 3491500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. . Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48: 51725.

    • Search Google Scholar
    • Export Citation
  • 22.

    Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, et al. . In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58: 3895903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. . Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia Coli. J Clin Microbiol 2014; 52: 150110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. . Phaster: a better, faster version of the PHAST PHAge search tool. Nucleic Acids Res 2016; 44: 1621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW, et al. . Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 2010; 7:e1000215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Monaco M, Pedroni P, Sanchini A, Bonomini A, Indelicato A, Pantosti A. Livestock-associated methicillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming. BMC Infect Dis 2013; 13: 258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Franco A, Hasman H, Iurescia M, Lorenzetti R, Stegger M, Pantosti A, et al. . Molecular characterization of spa type t127, sequence type 1 methicillin-resistant Staphylococcus aureus from pigs. J Antimicrob Chemother 2011; 66: 12315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Cuny C, Strommenger B, Witte W, Stanek C. Clusters of infections in horses with MRSA ST1, ST254, and ST398 in a veterinary hospital. Microb Drug Resist 2008; 14: 30710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Otter JA, Havill NL, Boyce JM, French GL. Comparison of community-associated methicillin-resistant Staphylococcus aureus from teaching hospitals in London and the USA, 2004–2006: where is USA300 in the UK? Eur J Clin Microbiol Infect Dis 2009; 28: 8359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ma XX, Ito T, Tiensasitorn C, Jamklang M, Chongtrakool P, Boyle-Vavra S, et al. . Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2002; 46: 114752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Cuny C, Wieler LH, Witte W. Livestock-associated MRSA: the impact on humans. Antibiotics (Basel) 2015; 4: 52143.

  • 32.

    Earls MR, Shore AC, Brennan GI, Simbeck A, Schneider-Brachert W, Vremera T, et al. . A novel multidrug-resistant PVL-negative CC1-MRSA-IV clone emerging in Ireland and Germany likely originated in south-eastern Europe. Infect Genet Evol 2019; 69: 11726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Loncaric I, Kunzel F, Licka T, Simhofer H, Spergser J, Rosengarten R. Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Vet Microbiol 2014; 168: 3817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Porrero MC, Mentaberre G, Sanchez S, Fernandez-Llario P, Gomez-Barrero S, Navarro-Gonzalez N, et al. . Methicillin resistant Staphylococcus aureus (MRSA) carriage in different free-living wild animal species in Spain. Vet J 2013; 198: 12730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Schwarz S, Shen J, Kadlec K, Wang Y, Brenner Michael G, Fessler AT, et al. . Lincosamides, streptogramins, phenicols, and pleuromutilins: Mode of action and mechanisms of resistance. Cold Spring Harb Perspect Med 2016; 6: a027037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Cortes MF, Costa MO, Lima NC, Souza RC, Almeida LG, Guedes LPC, et al. . Complete genome sequence of community-associated methicillin-resistant Staphylococcus aureus (strain USA400-0051), a prototype of the USA400 clone. Mem Inst Oswaldo Cruz 2017; 112: 7902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Shukla SK, Karow ME, Brady JM, Stemper ME, Kislow J, Moore N, et al. . Virulence genes and genotypic associations in nasal carriage, community-associated methicillin-susceptible and methicillin-resistant USA400 Staphylococcus aureus isolates. J Clin Microbiol 2010; 48: 358292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Alba P, Feltrin F, Cordaro G, Porrero MC, Kraushaar B, Argudin MA, et al. . Livestock-associated methicillin resistant and methicillin susceptible Staphylococcus aureus sequence type (CC) 1 in European farmed animals: high genetic relatedness of isolates from Italian cattle herds and humans. PLoS One 2015; 10: e0137143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Amoako DG, Somboro AM, Abia ALK, Allam M, Ismail A, Bester L, et al. . Genomic analysis of methicillin-resistant Staphylococcus aureus isolated from poultry and occupational farm workers in umgungundlovu district, South Africa. Sci Total Environ 2019; 670: 70416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Guo T, Zhang C, Xin Y, Xin M, Kong J. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus. J Ind Microbiol Biotechnol 2016; 43: 6819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Verkaik NJ, Benard M, Boelens HA, de Vogel CP, Nouwen JL, Verbrugh HA, et al. . Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin Microbiol Infect 2011; 17: 3438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, et al. . Staphylococcus aureus cc398: host adaptation and emergence of methicillin resistance in livestock. mBio 2012; 3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Stegger M, Liu CM, Larsen J, Soldanova K, Aziz M, Contente-Cuomo T, et al. . Rapid differentiation between livestock-associated and livestock-independent Staphylococcus aureus CC398 clades. PLoS One 2013; 8: e79645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Cuny C, Abdelbary M, Layer F, Werner G, Witte W. Prevalence of the immune evasion gene cluster in Staphylococcus aureus CC398. Vet Microbiol 2015; 177: 21923.

    • Crossref
    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
sumbission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 652 EUR / 812 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 111 3 4
Jul 2021 121 1 1
Aug 2021 0 0 0