Authors:
Sabiha YousufCollege of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China

Search for other papers by Sabiha Yousuf in
Current site
Google Scholar
PubMed
Close
,
He LiuCollege of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China

Search for other papers by He Liu in
Current site
Google Scholar
PubMed
Close
,
Zhang YingshuCollege of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China

Search for other papers by Zhang Yingshu in
Current site
Google Scholar
PubMed
Close
,
Danish ZahidCollege of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China

Search for other papers by Danish Zahid in
Current site
Google Scholar
PubMed
Close
,
Hassan GhayasInstitute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China

Search for other papers by Hassan Ghayas in
Current site
Google Scholar
PubMed
Close
,
Ming LiCollege of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China

Search for other papers by Ming Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4923-1964
,
Yan DingSchool of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China

Search for other papers by Yan Ding in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8431-7694
, and
Wenzhe LiGuangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, China

Search for other papers by Wenzhe Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3898-5602
Restricted access

Abstract

Ginsenoside Rg1 is one of the major ginsenosides found in roots of Panax ginseng and Panax notoginseng. Ginsenoside Rg1 is known to possess various biological activities including immunity enhancement activity. However, it is not clear whether the regulation of immune function by Rg1 is related to the intestinal microbiota. In the present study, the immuno-modulatory and gut microbiota-reshaping effects of ginsenoside Rg1 were evaluated. Ginsenoside Rg1 acts as an immune-enhancing agent to increase spleen index and the number of T, B and dendritic cells in dexamethasone (Dex)-treated mice. Ginsenoside Rg1 also increased the production of sIgA and regulated the expression of interleukin 2 (IL-2), IL-4, IL-10 and IFN-γ. Meanwhile, Rg1 administration regulated the structure of intestinal microbiota. The relative abundance of mouse intestinal microbial groups, such as Alistipes, Ruminococcaceae, Lachnospiraceae, and Roseburia were increased by Rg1 administration, whereas a decrease in the potential pathogens like Helicobacteraceae, Dubosiella, Mycoplasma, Alloprevotella, Allobaculum was observed. Moreover, Rg1 metabolites of Lachnospiraceae bacterium enhanced the proliferation of CD4+ T cells and T regulatory (Treg) cells. Ginsenoside Rg1 improved the inflammatory condition of the colonic tissue and repaired the destructed mucosal barrier. This study suggested that Rg1 strengthens immunity with regulating the homeostasis of intestinal microbiota in mice.

  • 1.

    Cornick S, Tawiah A, Chadee K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 2015; 3(1–2): e982426.

  • 2.

    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012; 149(7): 157893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504(7480): 4515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016; 167(5): 133953. e21.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015; 519(7541): 926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 2013; 7(2): 26980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Dao MC, Clément K. Gut microbiota and obesity: concepts relevant to clinical care. Eur J Intern Med 2018; 48: 1824.

  • 8.

    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 5560.

  • 9.

    Kosiewicz MM, Zirnheld AL, Alard P. Gut microbiota, immunity, and disease: a complex relationship. Front Microbiol 2011; 2: 180.

  • 10.

    Yeoh YK, Zuo T, Lui GC-Y, Zhang F, Liu Q, Li AY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wan JY, Liu P, Wang HY, Qi LW, Wang CZ, Li P, et al. Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A 2013; 1286: 8392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kang S, Min H. Ginseng, the ‘immunity boost': the effects of Panax ginseng on immune system. J ginseng Res 2012; 36(4): 354.

  • 13.

    Li J, Yang C, Zhang S, Liu S, Zhao L, Luo H, et al. Ginsenoside Rg1 inhibits inflammatory responses via modulation of the nuclear factor-κB pathway and inhibition of inflammasome activation in alcoholic hepatitis. Int J Mol Med 2018 Feb 1; 41(2): 899907.

    • Search Google Scholar
    • Export Citation
  • 14.

    Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang R. Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front Pharmacol 2012; 3: 25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wang JR, Yau LF, Gao WN, Liu Y, Yick PW, Liu L, et al. Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng. J Agric Food Chem 2014; 62(36): 902434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, et al. Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 2012; 166(6): 187287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Tian W, Chen L, Zhang L, Wang B, Li XB, Fan KR, et al. Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats. Genet Mol Res 2017; 16(1).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lee SY, Jeong JJ, Eun SH, Kim DH. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur J Pharmacol 2015; 762: 33343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Xu SF, Yu LM, Fan ZH, Wu Q, Yuan Y, Wei Y, et al. Improvement of ginsenoside Rg1 on hematopoietic function in cyclophosphamide-induced myelosuppression mice. Eur J Pharmacol 2012; 695(1–3): 712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Lee JH, Han Y. Ginsenoside Rg1 helps mice resist to disseminated candidiasis by Th1 type differentiation of CD4+ T cell. Int Immunopharmacol 2006; 6(9): 142430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Jin J, Zhong Y, Long J, Wu T, Jiang Q, Wang H, et al. Ginsenoside Rg1 relieves experimental colitis by regulating balanced differentiation of Tfh/Treg cells. Int Immunopharmacol 2021; 100: 108133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    He C, Feng R, Sun Y, Chu S, Chen J, Ma C, et al. Simultaneous quantification of ginsenoside Rg1 and its metabolites by HPLC-MS/MS: Rg1 excretion in rat bile, urine and feces. Acta Pharm Sin B 2016; 6(6): 5939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Bae EA, Shin JE, Kim DH. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol Pharm Bull 2005; 28(10): 19038.

  • 24.

    Guo Y, Wang L, Lu J, Jiao J, Yang Y, Zhao H, et al. Ginsenoside Rg1 improves cognitive capability and affects the microbiota of large intestine of tree shrew model for Alzheimer's disease. Mol Med Rep 2021; 23(4).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Li Y, Liu M, Zhou J, Hou B, Su X, Liu Z, et al. Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice. Benef Microbes 2019; 10(5): 54353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Xing K, Gu B, Zhang P, Wu X. Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: an insight into the optimum application of glucocorticoids in anti-cancer therapy. BMC Immunol 2015; 16: 39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Leong KW, Ding JL. The unexplored roles of human serum IgA. DNA Cell Biol 2014; 33(12): 8239.

  • 28.

    Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 2013; 4: 185.

  • 29.

    Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, et al. Ginsenoside Rg1 enhances CD4(+) T-cell activities and modulates Th1/Th2 differentiation. Int Immunopharmacol 2004; 4(2): 23544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Lori A, Perrotta M, Lembo G, Carnevale D. The spleen: a hub connecting nervous and immune systems in cardiovascular and metabolic diseases. Int J Mol Sci 2017; 18(6).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Chen X, Nie W, Fan S, Zhang J, Wang Y, Lu J, et al. A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice. Carbohydr Polym 2012; 90(2): 11149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Li Y, Zheng B, Tian H, Xu X, Sun Y, Mei Q, et al. Yupingfeng Powder relieves the immune suppression induced by dexamethasone in mice. J Ethnopharmacol 2017; 200: 11723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, Gruarin P, et al. Plasticity of human CD4 T cell subsets. Front Immunol 2014; 5: 630.

  • 34.

    Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 2001; 292(5523): 190710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A. A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2001; 2(1): 4550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Constant SL, Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 1997; 15: 297322.

  • 37.

    Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 2018; 557(7705): 4348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Solnick JV, Schauer DB. Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin Microbiol Rev 2001; 14(1): 5997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Ernst PB, Gold BD. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol 2000; 54: 61540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Sheng K, Zhang G, Sun M, He S, Kong X, Wang J, et al. Grape seed proanthocyanidin extract ameliorates dextran sulfate sodium-induced colitis through intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokines and gut microbiota modulation. Food Funct 2020; 11(9): 781729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Bai YF, Wang SW, Wang XX, Weng YY, Fan XY, Sheng H, et al. The flavonoid-rich Quzhou Fructus Aurantii extract modulates gut microbiota and prevents obesity in high-fat diet-fed mice. Nutr Diabetes 2019; 9(1): 30.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Mittal R, Sanchez-Luege SV, Wagner SM, Yan D, Liu XZ. Recent perspectives on gene-microbe interactions determining predisposition to otitis media. Front Genet 2019; 10: 1230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Roediger WE. Intestinal mycoplasma in Crohn's disease. Novartis Found Symp 2004; 263: 8593. discussion 93–8, 211–8.

  • 44.

    Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci 2007; 104(34): 137805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, et al. Decreased abundance of F aecalibacterium prausnitzii in the gut microbiota of C rohn's disease. J Gastroenterol Hepatol 2013; 28(4): 61319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70(10): 58107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Anand S, Kaur H, Mande SS. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front Microbiol 2016; 7: 1945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Bunker JJ, Drees C, Watson AR, Plunkett CH, Nagler CR, Schneewind O, et al. B cell superantigens in the human intestinal microbiota. Sci Transl Med 2019; 11(507).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015; 39(4): 28798.

  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 0 0 0
Jul 2022 0 0 0
Aug 2022 0 0 0
Sep 2022 0 0 0
Oct 2022 0 0 0
Nov 2022 522 7 12
Dec 2022 0 0 0