Authors:
Arash AbednezhadDepartment of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Search for other papers by Arash Abednezhad in
Current site
Google Scholar
PubMed
Close
,
Bita BakhshiDepartment of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Search for other papers by Bita Bakhshi in
Current site
Google Scholar
PubMed
Close
,
Nastaran Asghari MoghadamDepartment of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Search for other papers by Nastaran Asghari Moghadam in
Current site
Google Scholar
PubMed
Close
,
Nima FarajiDepartment of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Search for other papers by Nima Faraji in
Current site
Google Scholar
PubMed
Close
,
Elahe Derakhshan-NezhadFaculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Search for other papers by Elahe Derakhshan-Nezhad in
Current site
Google Scholar
PubMed
Close
, and
Hajar Mohammadi BarzelighiBiosun Pharmed Company, Tehran, Iran

Search for other papers by Hajar Mohammadi Barzelighi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5677-4273
Restricted access

Abstract

Infections caused by multidrug resistant (MDR) Pseudomonas aeruginosa isolates in burn patients restrict therapeutic strategies. The current study aimed to analyze antibiotic resistance genes and multilocus sequence typing (MLST) of P. aeruginosa strains isolated from burn patients in Shahid Motahari hospital in Tehran, Iran.

Altogether 63 P. aeruginosa isolates were characterized in this study. Antibiotic susceptibility testing was performed by disc diffusion method. PCR was performed to determine the frequency of resistance genes. The expression rates of mexB, mexY genes were evaluated by Real-Time PCR. Genotyping of isolates was performed by MLST analysis. All isolates were MDR in this study. The highest resistance was detected against gentamicin, tobramycin, and cefoxitin (100%), while all isolates were susceptible to colistin. Altogether 14 resistance profiles were determined, and profile 1 included more than 50% of the isolates with the highest resistance. In this study bla ampC, bla VIM-2, bla OXA-10, and aac(6′)-Ib resistance genes were detected in all isolates. The expression levels of mexB and mexY genes were upregulated in 66.6 and 88.8% of MDR isolates, respectively. Overexpression of both genes was detected in 55.5% of the isolates.

MLST analysis revealed five sequence types (STs), including ST235, ST664, ST532, ST2637, and ST230, which showed a significant relationship with antibiotic resistance profiles. The present study indicates an increase in antibiotic resistance against different antibiotic families among P. aeruginosa isolates. We describe the circulation of globally distributed STs among hospitalized patients, and we report ST235 as the most common MDR clone in our study.

  • 1.

    Neely CJ, Kartchner LB, Mendoza AE, Linz BM, Frelinger JA, Wolfgang MC, et al. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12- neutrophil polarization. PLoS One 2014; 9(1): e85623. https://doi.org/10.1371/journal.pone.0085623.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Neely CJ, Kartchner LB, Mendoza AE, Linz BM, Frelinger JA, Wolfgang MC, et al. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12-neutrophil polarization. PLoS One 2014; 9(1): e85623.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Krishnan P, Frew Q, Green A, Martin R, Dziewulski P. Cause of death and correlation with autopsy findings in burns patients. Burns 2013; 39(4): 583588.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Manson WL, Klasen HJ, Sauer EW, Olieman A. Selective intestinal decontamination for prevention of wound colonization in severely burned patients: a retrospective analysis. Burns 1992; 18(2): 98102. https://doi.org/10.1016/0305-4179(92)90002-c.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Manson W, Klasen H, Sauer E, Olieman A. Selective intestinal decontamination for prevention of wound colonization in severely burned patients: a retrospective analysis. Burns 1992; 18(2): 98102.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Biswal I, Arora BS, Kasana D, Neetushree. Incidence of multidrug resistant pseudomonas aeruginosa isolated from burn patients and environment of teaching institution. J Clin Diagn Res 2014; 8(5): Dc26Dc29. https://doi.org/10.7860/jcdr/2014/7483.4383.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ghanbarzadeh Corehtash Z, Khorshidi A, Firoozeh F, Akbari H, Mahmoudi Aznaveh A. Biofilm Formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur J Microbiol 2015; 8(10): e22345. https://doi.org/10.5812/jjm.22345.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002; 34(5): 634640.

  • 9.

    Meletis G, Exindari M, Vavatsi N, Sofianou D, Diza E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia 2012; 16(4): 303307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Shaw K, Rather P, Hare R, Miller G. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Mol Biol Rev 1993; 57(1): 138163.

    • Search Google Scholar
    • Export Citation
  • 11.

    Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000; 44(9): 22422246.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Enright MC, Spratt BG. Multilocus sequence typing. Trends Microbiology 1999; 7(12): 482487.

  • 13.

    Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, El Din Ashour S. Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt. BMC Infect Dis 2015; 15(1): 122. https://doi.org/10.1186/s12879-015-0861-8.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 2016; 6(2): 7179.

  • 15.

    Pitout JD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J Clin Microbiol 2005; 43(7): 31293135.

    • Search Google Scholar
    • Export Citation
  • 16.

    Rafiee R, Eftekhar F, Tabatabaei SA, Minaee Tehrani D. Prevalence of extended-spectrum and metallo beta-lactamase production in AmpC beta-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol 2014; 7(9): e16436. https://doi.org/10.5812/jjm.16436.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Alqarni B, Colley B, Klebensberger J, McDougald D, Rice SA. Expression stability of 13 housekeeping genes during carbon starvation of Pseudomonas aeruginosa. J Microbiol Methods 2016; 127: 182187. https://doi.org/10.1016/j.mimet.2016.06.008.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 2013; 3(3): 7185.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 2004; 42(12): 56445649.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309318. https://doi.org/10.1179/2047773215y.0000000030.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rastegar Lari AR, Alaghehbandan R, Akhlaghi L. Burn wound infections and antimicrobial resistance in tehran, Iran: an increasing problem. Ann Burns Fire Disasters 2005; 18(2): 6873.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Corehtash ZG, Ahmad Khorshidi FF, Akbari H, Aznaveh AM. Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur J Microbiol 2015; 8(10).

    • Search Google Scholar
    • Export Citation
  • 23.

    Fazeli H, Sadighian H, Esfahani BN, Pourmand MR. Genetic characterization of Pseudomonas aeruginosa-resistant isolates at the university teaching hospital in Iran. Adv Biomed Res 2015; 4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Akhi MT, Ghotaslou R, Asgharzadeh M, Varshochi M, Pirzadeh T, Memar MY, et al. Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran. GMS Hyg Infect Control 2015; 10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Azimi L, Rastegar-Lari A, Talebi M, Ebrahimzadeh-Namvar A, Soleymanzadeh-Moghadam S. Evaluation of phenotypic methods for detection of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in Tehran. J Med Bacteriol 2013; 2(3–4): 2631.

    • Search Google Scholar
    • Export Citation
  • 26.

    Rafiee R, Eftekhar F, Tabatabaei SA, Tehrani DM. Prevalence of extended-spectrum and metallo β-lactamase production in AmpC β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol 2014; 7(9).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother 2011; 55(11): 53705373.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M, et al. Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and Intensive Care Unit isolates of Pseudomonas aeruginosa. J Infect Public Health 2018; 11(3): 364372. https://doi.org/10.1016/j.jiph.2017.09.016.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Dumas JL, van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254(2): 217225. https://doi.org/10.1111/j.1574-6968.2005.00008.x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2003; 23(7): 916924. https://doi.org/10.1592/phco.23.7.916.32722.

    • Search Google Scholar
    • Export Citation
  • 31.

    Arabestani MR, Rajabpour M, Yousefi Mashouf R, Alikhani MY, Mousavi SM. Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med 2015; 18(2): 102108.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. Pediatrics 1999; 103(4): e39. https://doi.org/10.1542/peds.103.4.e39.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Llanes C, Köhler T, Patry I, Dehecq B, van Delden C, Plésiat P. Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother 2011; 55(12): 56765684. https://doi.org/10.1128/aac.00101-11.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35(5): 736755. https://doi.org/10.1111/j.1574-6976.2011.00268.x%J.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Yousefi S, Nahaei MR, Farajnia S, Aghazadeh M, Iversen A, Edquist P, et al. A multiresistant clone of Pseudomonas aeruginosa sequence type 773 spreading in a burn unit in Orumieh, Iran. Apmis 2013; 121(2): 146152. https://doi.org/10.1111/j.1600-0463.2012.02948.x.

    • Search Google Scholar
    • Export Citation
  • 36.

    Liu C-P, Chen T-L, Wang N-Y, Chow S-F, Lin J-C, T-RjjoM Y. Detection of Pseudomonas aeruginosa isolates carrying the blaOXA-142 extended-spectrum β-lactamase gene in Taiwan. Immunol Infect 2017; 50(1): 6874.

    • Search Google Scholar
    • Export Citation
  • 37.

    Giske CG, Libisch B, Colinon C, Scoulica E, Pagani L, Fuüzi M, et al. Establishing clonal relationships between VIM-1-like metallo-β-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing 2006; 44(12): 43094315.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Giani T, Arena F, Pollini S, Di Pilato V, D’Andrea M, De Angelis LH, et al. (2018) Pseudomonas aeruginosa Working Group Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: activity of ceftolozane/tazobactam and comparators, and molecular epidemiology of carbapenemase producers 2018; 73: 664671.

    • Search Google Scholar
    • Export Citation
  • 39.

    Vaez H, Safaei HG, Faghri JJB. The emergence of multidrug-resistant clone ST664 Pseudomonas aeruginosa in a referral burn hospital, Isfahan, Iran. Trauma 2017; 5.

    • Search Google Scholar
    • Export Citation
  • 40.

    Fazeli H, Sadighian H, Esfahani BN, Pourmand MR. Molecular epidemiology and mechanisms of antimicrobial resistance in Pseudomonas aeruginosa isolates causing burn wound infection in Iran. J Chemother 2014; 26(4): 222228.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Carvalho KR, Carvalho-Assef APDA, Peirano G, dos Santos LCG, Pereira MJF, Asensi MD. Dissemination of multidrug-resistant Acinetobacter baumannii genotypes carrying blaOXA-23 collected from hospitals in Rio de Janeiro, Brazil. Int J Antimicrob Agents 2009; 34(1): 2528.

    • Search Google Scholar
    • Export Citation
  • 42.

    Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid-and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 2000; 44(4): 891897.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns 2014; 40(8): 15561561.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Igbinosa EO, Obuekwe IS. Evaluation of antibiotic resistant gene in abattoir environment. J Appl Sci Environ Manag. 2014; 18(2): 165170.

    • Search Google Scholar
    • Export Citation
  • 45.

    Atasoy AR, Ciftci IH, Petek M. Modifying enzymes related aminoglycoside: analyses of resistant Acinetobacter isolates. Int J Clin Exp Med 2015; 8(2): 2874.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Hirsch DR, Cox G, D'Erasmo MP, Shakya T, Meck C, Mohd N, et al. Inhibition of the ANT(2″)-Ia resistance enzyme and rescue of aminoglycoside antibiotic activity by synthetic alpha-hydroxytropolones. Bioorg Med Chem Lett 2014; 24(21): 49434947. https://doi.org/10.1016/j.bmcl.2014.09.037.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Nie L, Lv Y, Yuan M, Hu X, Nie T, Yang X, et al. Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharmaceutica Sinica B 2014; 4(4): 295300.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Dumas J-L, Van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254(2): 217225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Al-Kabsi AM, Yusof M, Mansor M, Siok Yan GO, Manikam R, Sekaran SD. Multidrug efflux pumps over expression and its association with porin down regulation and β-lactamase production among nosocomial P. aeruginosa isolates from University of Malaya Medical Center, Malaysia. Int J Chem Environ Biol Sci 2015; 3: 125135.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2022 0 0 0
Sep 2022 0 0 0
Oct 2022 0 0 0
Nov 2022 0 0 0
Dec 2022 0 0 0
Jan 2023 117 2 3
Feb 2023 8 2 3