Multidrug-resistant (MDR) Acinetobacter baumannii is a serious global health threat. Burn patients are at high risk to acquire A. baumannii infections from endogenous sources. This study evaluated carbapenem resistance and clonal relatedness of A. baumannii isolated from burn patients and healthcare workers (HCWs).
The study was performed in 100 non-duplicated A. baumannii isolates from nasal and hand samples of hospitalized burn patients and HCWs in two hospitals of Iran from June 2020 to August 2021. Antimicrobial susceptibility testing was performed and carbapenemase genes were detected by PCR. Clonal relatedness of A. baumannii isolates was determined by two single-locus sequence-based typing of bla OXA-51-like and ampC and by multilocus sequence typing (MLST).
All A. baumannii isolates were found to be MDR while susceptible to colistin. The intI1, conserved segments of class 1 integron (intI1 CS), bla IMP, bla VIM, bla OXA-51-like, and bla OXA-23-like, genes were detected in 32.5%, 29.1%, 36%, 95.3%, 100%, 100%; and 14.3%, 14.3%, 21.4%, 92.9%, 100%, and 85.7% of isolates from patients and from healthcare workers, respectively. The bla OXA-58, and bla OXA-143 were not detected among the isolates. Using dual-locus bla OXA-51-like and ampC sequence-based typing (SBT), the isolates obtained from nasal samples of burn patients were grouped into 3 clusters including bla OXA-317, bla ADC-88 (72.1%); bla OXA-64, ampC-25 (18.6%); and bla OXA-69, ampC-1 (9.3%). While only allele type bla OXA-317, bla ADC-88 was determined among isolates from HCWs. MLST results showed A. baumannii ST136, ST25, and ST1 from burn patients. However, A. baumannii strains from HCWs belonged to ST136. Our findings indicate high prevalence of globally spreading of MDR A. baumannii ST136 carrying bla OXA-23-like from nasal and hand samples of burn patients and HCWs.
Nikibakhsh M, Firoozeh F, Badmasti F, Kabir K, Zibaei M. Molecular study of metallo-β-lactamases and integrons in Acinetobacter baumannii isolates from burn patients. BMC Infect Dis 2021; 21(1): 782. https://doi.org/10.1186/s12879-021-06513-w.
Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008; 21(3): 538–582. http://doi.org/10.1128/CMR.00058-07.
Risser C, Pottecher J, Launoy A, Ursenbach A, Belotti L, Boyer P, et al. Management of a major carbapenem-resistant Acinetobacter baumannii outbreak in a French intensive care unit while maintaining its capacity unaltered. Microorganisms 2022; 10(4): 720. http://doi.org/10.3390/microorganisms10040720.
Barnes SL, Morgan DJ, Harris AD, Carling PC, Thom KA. Preventing the transmission of multidrug-resistant organisms: modeling the relative importance of hand hygiene and environmental cleaning interventions. Infect Control Hosp Epidemiol 2014; 35(9): 1156–1162. https://doi.org/10.1086/677632.
Falah F, Shokoohizadeh L, Adabi M. Molecular identification and genotyping of Acinetobacter baumannii isolated from burn patients by PCR and ERIC-PCR. Scars Burn Heal 2019; 5: 2059513119831369. https://doi.org/10.1177/2059513119831369.
Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 2017; 30(1): 409–447. https://doi.org/10.1128/CMR.00058-16.
Bakhshi F, Firoozeh F, Badmasti F, Dadashi M, Zibaei M, Khaledi A. Molecular detection of OXA-type carbapenemases among Acinetobacter baumannii isolated from burn patients and hospital environments. Open Microbiol J 2022; 16: 1–6.
Fernández-Cuenca F, Martínez-Martínez L, Conejo MC, Ayala JA, Perea EJ, Pascual A. Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother 2003; 51(3): 565–574.
Dortet L, Poirel L, Errera C, Nordmann P. CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol 2014; 52(7): 2359–2364. https://doi.org/10.1128/JCM.00594-14.
Firoozeh F, Aghaseyed-Hosseini M, Zibaei M, Piroozmand A. Detection of blaKPC and blaGES carbapenemase genes in Klebsiella pneumoniae isolated from hospitalized patients in Kashan, Iran. Recent Pat Antiinfect Drug Discov 2016; 11(2): 183–188. https://doi.org/10.2174/1574891X11666160813192556.
Amiri A, Firoozeh F, Moniri R, Zibaei M. Prevalence of CTX-M-type and PER extended-spectrum β-lactamases among Klebsiella spp. isolated from clinical specimens in the teaching hospital of Kashan, Iran. Iran Red Crescent Med J 2016; 18(3): e22260. https://doi.org/10.5812/ircmj.22260.
Pournaras S, Gogou V, Giannouli M, Dimitroulia E, Dafopoulou K, Tsakris A, et al. Single-locus-sequence-based typing of blaOXA-51-like genes for rapid assignment of Acinetobacter baumannii clinical isolates to international clonal lineages. J Clin Microbiol 2014; 52(5): 1653–1657. https://doi.org/10.1128/JCM.03565-13.
Hamouda A, Evans BA, Towner KJ, Amyes SG. Characterization of epidemiologically unrelated Acinetobacter baumannii isolates from four continents by use of multilocus sequence typing, pulsed-field gel electrophoresis, and sequence-based typing of blaOXA-51-like genes. J Clin Microbiol. 2010; 48(7): 2476–2483. https://doi.org/10.1128/JCM.02431-09.
Morgan DJ, Liang SY, Smith CL, Johnson JK, Harris AD, Furuno JP, et al. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol 2010; 31(7): 716–721. https://doi.org/10.1086/653201.
Nazari M, Azizi O, Solgi H, Fereshteh S, Shokouhi S, Badmasti F. Emergence of carbapenem resistant Acinetobacter baumannii clonal complexes CC2 and CC10 among fecal carriages in an educational hospital. Int J Environ Health Res 2021: 1–11. https://doi.org/10.1080/09603123.2021.1892036.
Spellberg B, Bonomo RA. “Airborne assault”: a new dimension in Acinetobacter baumannii transmission. Crit Care Med 2013; 41(8): 2042–2044. https://doi.org/10.1097/CCM.0b013e31829136c3.
Shamsizadeh Z, Nikaeen M, Nasr Esfahani B, et al. Detection of antibiotic resistant Acinetobacter baumannii in various hospital environments: potential sources for transmission of Acinetobacter infections. Environ Health Prev Med 2017; 22: 44. https://doi.org/10.1186/s12199-017-0653-4.
Custovic A, Smajlovic J, Tihic N, Hadzic S, Ahmetagic S, Hadzagic H. Epidemiological monitoring of nosocomial infections caused by Acinetobacter baumannii. Med Arch 2014; 68(6): 402–406. https://doi.org/10.5455/medarh.2014.68.402-406.
Pajand O, Rezaee MA, Nahaei MR, Mahdian R, Aghazadeh M, Soroush MH, et al. Study of the carbapenem resistance mechanisms in clinical isolates of Acinetobacter baumannii: comparison of burn and non-burn strains. Burns 2013; 39(7): 1414–1419. https://doi.org/10.1016/j.burns.2013.03.024.
Gao J, Zhao X, Bao Y, Ma R, Zhou Y, Li X, et al. Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards. Burns 2014; 40(2): 295–299. https://doi.org/10.1016/j.burns.2013.06.003.
Peleg AY, Franklin C, Walters LJ, Bell JM, Spelman DW. OXA-58 and IMP-4 carbapenem-hydrolyzing beta-lactamases in an Acinetobacter junii blood culture isolate from Australia. Antimicrob Agents Chemother 2006; 50(1): 399–400. https://doi.org/10.1128/AAC.50.1.399-400.2006.
Seyyedi Abhari S, Badmasti F, Modiri L, Aslani MM, Asmar M. Circulation of imipenem-resistant Acinetobacter baumannii ST10, ST2 and ST3 in a university teaching hospital from Tehran, Iran. Journal of Medical Microbiology 2019; 68(6): 860–865. Available from: https://doi.org/10.1099/jmm.0.000987.
Piran A, Shahcheraghi F, Solgi H, Rohani M, Badmasti F. A reliable combination method to identification and typing of epidemic and endemic clones among clinical isolates of Acinetobacter baumannii. Infect Genet Evol 2017; 54: 501–507. https://doi.org/10.1016/j.meegid.2017.08.018.
Johnson JK, Robinson GL, Zhao L, Harris AD, Stine OC, Thom KA. Comparison of molecular typing methods for the analyses of Acinetobacter baumannii from ICU patients. Diagn Microbiol Infect Dis 2016; 86(4): 345–350. https://doi.org/10.1016/j.diagmicrobio.2016.08.024.
Gaiarsa S, Batisti Biffignandi G, Esposito EP, Castelli M, Jolley KA, Brisse S, et al. Comparative analysis of the two Acinetobacter baumannii multilocus sequence typing (MLST) schemes. Front Microbiol. 2019; 10: 930. https://doi.org/10.3389/fmicb.2019.00930.
Alcántar-Curiel MD, Rosales-Reyes R, Jarillo-Quijada MD, Gayosso-Vázquez C, Fernández-Vázquez JL, Toledano-Tableros JE, et al. Carbapenem-resistant Acinetobacter baumannii in three tertiary care hospitals in Mexico: virulence profiles, innate immune response and clonal dissemination. Front Microbiol 2019; 10: 2116. https://doi.org/10.3389/fmicb.2019.02116.
Bonnin RA, Potron A, Poirel L, Lecuyer H, Neri R, Nordmann P. PER-7, an extended-spectrum beta-lactamase with increased activity toward broad-spectrum cephalosporins in Acinetobacter baumannii. Antimicrob Agents Chemother 2011; 55(5): 2424–2427. https://doi.org/10.1128/AAC.01795-10.
Adams-Haduch JM, Onuoha EO, Bogdanovich T, Tian GB, Marschall J, Urban CM, et al. Molecular epidemiology of carbapenem-nonsusceptible Acinetobacter baumannii in the United States. J Clin Microbiol 2011; 49(11): 3849–3854. https://doi.org/10.1128/JCM.00619-11.
Sahl JW, Del Franco M, Pournaras S, Colman RE, Karah N, Dijkshoorn L, et al. Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci Rep 2015; 5: 15188. https://doi.org/10.1038/srep15188.