Authors:
Fatemeh Behrouzmanesh Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Fatemeh Behrouzmanesh in
Current site
Google Scholar
PubMed
Close
,
Sahar Ahmad Samali Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran

Search for other papers by Sahar Ahmad Samali in
Current site
Google Scholar
PubMed
Close
,
Rozhin Nasehi Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran

Search for other papers by Rozhin Nasehi in
Current site
Google Scholar
PubMed
Close
,
Ali Shivaee Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Ali Shivaee in
Current site
Google Scholar
PubMed
Close
, and
Mehdi Goudarzi Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Mehdi Goudarzi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6720-9341
Restricted access

Abstract

Although mobile phones as a rapid communication vehicle can lead to improved quality of healthcare, they can also facilitate the transmission of pathogens to patients. This current research focuses on genetic diversity, and genes involved in resistance and biofilm production of Staphylococcus aureus isolates from mobile phones of medical students. Antibiotic resistance profiling and polymerase chain reaction (PCR) amplification of antibiotic resistance and biofilm-related genes were investigated and statistically analyzed. Staphylococcal cassette chromosome mec (SCCmec) types were analyzed by multiplex PCR, and S. aureus protein A gene typing (spa typing) was done using PCR and sequencing. Sixty-four S. aureus isolates (16.8%) were obtained from 380 medical students' mobile phones who were working in hospitals. The findings showed that 71.9% of the isolates were MRSA and 78.1% were classified as MDR. All isolates exhibited sensitivity to vancomycin and linezolid. Overall, 7.8% of the isolates displayed an inducible clindamycin resistance phenotype, while 26.7% showed resistance to mupirocin. The results indicated that 68.8% of the isolates were biofilm producers, with 7 isolates (15.9%) classified as strong producers, 22 isolates (50%) as moderate producers, and 15 isolates (34.1%) as weak producers. The most prevalent type was CC8-MRSA III/t030 (18.7%), followed by CC8-MRSA III/t037 (12.5%), CC/ST22-MSSA/t790 (10.9%), CC1-MRSA IV-t114 (9.4%), CC1-MRSA IV-t127 (7.8%), CC8-MRSA V/t064 (7.8%), CC/ST15-MSSA-t360 (7.8%), CC30-MSSA/t021(6.3%), MRSA V-t355 (6.3%), CC8-MRSA III/t421 (4.7%), CC1-MRSA V-t267 (4.7%), and CC/ST15-MSSA-t084 (3.1%). The genetic diversity and prevalent multidrug resistance indicate that the resistance situation of S. aureus recovered from mobile phones in Tehran is severe, posing a potential threat to patients, the community, and healthcare settings.

  • 1.

    De Groote P, Blot K, Conoscenti E, Labeau S, Blot S. Mobile phones as a vector for Healthcare-Associated Infection: a systematic review. Intensive Crit Care Nurs 2022; 72: 103266. https://doi.org/10.1016/j.iccn.2022.103266.

    • Search Google Scholar
    • Export Citation
  • 2.

    Oluduro AO, Adesiyan YM, Omoboye OO, Odeyemi AT. Phenotypic and molecular characterization of Staphylococcus aureus from mobile phones in Nigeria. AIMS Microbiol 2023; 9: 40218. https://doi.org/10.3934/microbiol.2023021.

    • Search Google Scholar
    • Export Citation
  • 3.

    Simmonds-Cavanagh R. Viability of hospital pathogens on mobile phone. Am J Infect Control 2022; 50: 78791. https://doi.org/10.1016/j.ajic.2021.11.003.

    • Search Google Scholar
    • Export Citation
  • 4.

    Hamdan-Partida A, González-García S, Martínez-Ruíz FJ, Zavala-Sánchez , Bustos-Hamdan A, Bustos-Martínez J. Molecular characterization of staphylococcus aureus strains isolated from mobile phones. Microorganisms 2022; 10: 669. https://doi.org/10.3390/microorganisms10030669.

    • Search Google Scholar
    • Export Citation
  • 5.

    Furuhata K, Ishizaki N, Sogawa K, Kawakami Y, Lee S-I, Sato M, et al. Isolation, identification and antibacterial susceptibility of Staphylococcus spp. Associated with the mobile phones of university students. Biocontrol Sci 2016; 21: 918. https://doi.org/10.4265/bio.21.91.

    • Search Google Scholar
    • Export Citation
  • 6.

    Jansen AS, Balbinot GC, Daur AV, Silva ACFd, Nogueira KS, Fernandes T, et al. Detection of potentially pathogenic bacteria on cell phones of hospital and university-based populations in Curitiba, southern Brazil. A cross-sectional study. Sao Paulo Med J 2019; 137: 3438. https://doi.org/10.1590/1516-3180.2018.044305072019.

    • Search Google Scholar
    • Export Citation
  • 7.

    Al-Masri MY, Abu-Hasan NS. Staphylococcus aureus carriage and contamination of mobile phones among students of An-Najah National University in Palestine (P. 247). Chula Med J 2020; 64: 24757.

    • Search Google Scholar
    • Export Citation
  • 8.

    Jalalmanesh S, Darvishi M, Rahimi M, Akhlaghdoust M. Contamination of senior medical students' cell phones by nosocomial infections: a survey in a university-affiliated Hospital in Tehran. Shiraz E-med J 2017; 18. https://doi.org/10.5812/semj.43920.

    • Search Google Scholar
    • Export Citation
  • 9.

    Banawas S, Abdel-Hadi A, Alaidarous M, Alshehri B, Bin Dukhyil AA, Alsaweed M, et al. Multidrug-resistant bacteria associated with cell phones of healthcare professionals in selected hospitals in Saudi Arabia. Can J Infect Dis Med Microbiol 2018; 2018. https://doi.org/10.1155/2018/6598918.

    • Search Google Scholar
    • Export Citation
  • 10.

    Mushabati N, Samutela M, Yamba K, Ngulube J, Nakazwe R, Nkhoma P, et al. Bacterial contamination of mobile phones of healthcare workers at the University Teaching Hospital, Lusaka, Zambia. J Infect Prev 2021; 3: 100126. https://doi.org/10.1016/j.infpip.2021.100126.

    • Search Google Scholar
    • Export Citation
  • 11.

    Cicciarella Modica D, Maurici M, D'Alò GL, Mozzetti C, Messina A, Distefano A, et al. Taking screenshots of the invisible: a study on bacterial contamination of mobile phones from university students of healthcare professions in Rome, Italy. Microorganisms 2020; 8: 1075. https://doi.org/10.3390/microorganisms8071075.

    • Search Google Scholar
    • Export Citation
  • 12.

    Silva V, Capelo JL, Igrejas G, Poeta P. Molecular mechanisms of antimicrobial resistance in Staphylococcus aureus biofilms. Emerging Modalities Mitigation Antimicrob Resist 2022: 291314. https://doi.org/10.1007/978-3-030-84126-3_12.

    • Search Google Scholar
    • Export Citation
  • 13.

    Noumi E, Merghni A, Alreshidi M, Del Campo R, Adnan M, Haddad O, et al. Phenotypic and genotypic characterization with MALDI-TOF-MS based identification of Staphylococcus spp. isolated from Mobile phones with their antibiotic susceptibility, biofilm formation, and adhesion properties. Int J Environ Res Public Health 2020; 17: 3761. https://doi.org/10.3390/ijerph17113761.

    • Search Google Scholar
    • Export Citation
  • 14.

    Goudarzi M, Kobayashi N, Dadashi M, Pantůček R, Nasiri MJ, Fazeli M, et al. Prevalence, genetic diversity, and temporary shifts of inducible clindamycin resistance Staphylococcus aureus clones in Tehran, Iran: a molecular-epidemiological analysis from 2013 to 2018. Front Microbiol 2020; 11: 663. https://doi.org/10.3389/fmicb.2020.00663.

    • Search Google Scholar
    • Export Citation
  • 15.

    Goudarzi M, Goudarzi H, Sá Figueiredo AM, Udo EE, Fazeli M, Asadzadeh M, et al. Molecular characterization of methicillin resistant Staphylococcus aureus strains isolated from intensive care units in Iran: ST22-SCC mec IV/t790 emerges as the major clone. PLoS One 2016; 11: e0155529. https://doi.org/10.1371/journal.pone.0155529.

    • Search Google Scholar
    • Export Citation
  • 16.

    Yousefi M, Pourmand MR, Fallah F, Hashemi A, Mashhadi R, Nazari-Alam A. Characterization of Staphylococcus aureus biofilm formation in urinary tract infection. Iran J Public Health 2016; 45: 485.

    • Search Google Scholar
    • Export Citation
  • 17.

    Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 2003; 41: 54428. https://doi.org/10.1128/JCM.41.12.5442-5448.2003.

    • Search Google Scholar
    • Export Citation
  • 18.

    Goh Z, Chung P. Incidence of meticillin-resistant Staphylococcus aureus contamination on mobile phones of medical students. J Hosp Infect 2019; 101: 4823. https://doi.org/10.1016/j.jhin.2019.01.022.

    • Search Google Scholar
    • Export Citation
  • 19.

    Zakai S, Mashat A, Abumohssin A, Samarkandi A, Almaghrabi B, Barradah H, et al. Bacterial contamination of cell phones of medical students at King Abdulaziz University, Jeddah, Saudi Arabia. J Microsc Ultrastruct 2016; 4: 1436. https://doi.org/10.1016/j.jmau.2015.12.004.

    • Search Google Scholar
    • Export Citation
  • 20.

    Kanayama AK, Takahashi H, Yoshizawa S, Tateda K, Kaneko A, Kobayashi I. Staphylococcus aureus surface contamination of mobile phones and presence of genetically identical strains on the hands of nursing personnel. Am J Infect Control 2017; 45: 92931. https://doi:10.1016/j.ajic.2017.02.011.

    • Search Google Scholar
    • Export Citation
  • 21.

    Taher N. Pathogenic bacteria isolated from personal cell phones of health care staff in Iraqi hospitals. J Pure Appl Microbiol 2019; 13: 114550. https://dx.doi.org/10.22207/JPAM.13.2.53.

    • Search Google Scholar
    • Export Citation
  • 22.

    Dadashi M, Hajikhani B, Darban-Sarokhalil D, van Belkum A, Goudarzi M. Mupirocin resistance in Staphylococcus aureus: a systematic review and meta-analysis. J Glob Antimicrob Resist 2020; 20: 23847. https://doi.org/10.1016/j.jgar.2019.07.032.

    • Search Google Scholar
    • Export Citation
  • 23.

    Babu T, Rekasius V, Parada JP, Schreckenberger P, Challapalli M. Mupirocin resistance among methicillin-resistant Staphylococcus aureus-colonized patients at admission to a tertiary care medical center. J Clin Microbiol 2009; 47: 227980. https://doi.org/10.1128/JCM.01834-08.

    • Search Google Scholar
    • Export Citation
  • 24.

    Desroches M, Potier J, Laurent F, Bourrel A-S, Doucet-Populaire F, Decousser J-W, et al. Prevalence of mupirocin resistance among invasive coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus (MRSA) in France: emergence of a mupirocin-resistant MRSA clone harbouring mupA. J Antimicrob Chemother 2013; 68: 17147. https://doi.org/10.1093/jac/dkt085.

    • Search Google Scholar
    • Export Citation
  • 25.

    Liu Q-Z, Wu Q, Zhang Y-B, Liu M-N, Hu F-P, Xu X-G, et al. Prevalence of clinical meticillin-resistant Staphylococcus aureus (MRSA) with high-level mupirocin resistance in Shanghai and Wenzhou, China. Int J Antimicrob Agents 2010; 35: 1148. https://doi.org/10.1016/j.ijantimicag.2009.09.018.

    • Search Google Scholar
    • Export Citation
  • 26.

    Goudarzi M, Mohammadi A, Amirpour A, Fazeli M, Nasiri MJ, Hashemi A, et al. Genetic diversity and biofilm formation analysis of Staphylococcus aureus causing urinary tract infections in Tehran, Iran. J Infect Dev Ctries 2019; 13: 77785. https://doi.org/10.3855/jidc.11329.

    • Search Google Scholar
    • Export Citation
  • 27.

    Prakash PH, Rajan V, Gopal S. Predominance of SCCmec types IV and V among biofilm producing device-associated Staphylococcus aureus strains isolated from tertiary care hospitals in Mysuru, India. Enferm Infecc Microbiol Clin 2017; 35: 22935. https://doi.org/10.1016/j.eimc.2016.09.005.

    • Search Google Scholar
    • Export Citation
  • 28.

    Navidinia M, Zamani S, Mohammadi A, Araghi S, Amini C, Pourhossein B, et al. Hospital-related lineage of USA300 methicillin-resistant Staphylococcus aureus (MRSA) to cause bacteremia in Iran. Biomed Res Int 2023; 2023. https://doi.org/10.1155/2023/8335385.

    • Search Google Scholar
    • Export Citation
  • 29.

    Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 2011; 6: e17936. https://doi.org/10.1371/journal.pone.0017936.

    • Search Google Scholar
    • Export Citation
  • 30.

    Boswihi SS, Udo EE, Al-Sweih N. Shifts in the clonal distribution of methicillin-resistant Staphylococcus aureus in Kuwait hospitals: 1992-2010. PLoS One 2016; 11: e0162744. https://doi.org/10.1371/journal.pone.0162744.

    • Search Google Scholar
    • Export Citation
  • 31.

    Boswihi SS, Udo EE, AlFouzan W. Antibiotic resistance and typing of the methicillin-resistant Staphylococcus aureus clones in Kuwait hospitals, 2016-2017. BMC Microbiol 2020; 20: 19. https://doi.org/10.1186/s12866-020-02009-w.

    • Search Google Scholar
    • Export Citation
  • 32

    Li J, Wang L, Ip M, Sun M, Sun J, Huang G, et al. Molecular and clinical characteristics of clonal complex 59 methicillin-resistant Staphylococcus aureus infections in Mainland China. PLoS One 2013; 8: e70602. https://doi.org/10.1371/journal.pone.0070602.

    • Search Google Scholar
    • Export Citation
  • 33.

    Goudarzi M, Bahramian M, Tabrizi MS, Udo EE, Figueiredo AMS, Fazeli M, et al. Genetic diversity of methicillin resistant Staphylococcus aureus strains isolated from burn patients in Iran: ST239-SCCmec III/t037 emerges as the major clone. Microb Pathog 2017; 105: 17. https://doi.org/10.1016/j.micpath.2017.02.004.

    • Search Google Scholar
    • Export Citation
  • 34.

    Qin Y, Wen F, Zheng Y, Zhao R, Hu Q, Zhang R. Antimicrobial resistance and molecular characteristics of methicillin-resistant Staphylococcus aureus isolates from child patients of high-risk wards in Shenzhen, China. Jpn J Infect Dis 2017; 70: 47984. https://doi.org/10.7883/yoken.JJID.2016.328.

    • Search Google Scholar
    • Export Citation
  • 35.

    Mora-Hernández Y, Vera Murguía E, Stinenbosch J, Hernández Jauregui P, van Dijl JM, Buist G. Molecular typing and antimicrobial resistance profiling of 33 mastitis-related Staphylococcus aureus isolates from cows in the Comarca Lagunera region of Mexico. Sci Rep 2021; 11: 6912. https://doi.org/10.1038/s41598-021-86453-2.

    • Search Google Scholar
    • Export Citation
  • 36.

    Earls MR, Kinnevey PM, Brennan GI, Lazaris A, Skally M, O'Connell B, et al. The recent emergence in hospitals of multidrug-resistant community-associated sequence type 1 and spa type t127 methicillin-resistant Staphylococcus aureus investigated by whole-genome sequencing: implications for screening. PLoS One 2017; 12: e0175542. https://doi.org/10.1371/journal.pone.0175542.

    • Search Google Scholar
    • Export Citation
  • 37.

    Tsergouli K, Karampatakis T, Kontopoulou K, Pappa S, Kampouridou P, Kallasidou G, et al. Spa diversity and genetic characterization of t127 methicillin-resistant Staphylococcus aureus in a tertiary Greek hospital. Acta Microbiol Immunol Hung 2022; 69: 18592. https://doi.org/10.1556/030.2022.01825.

    • Search Google Scholar
    • Export Citation
  • 38.

    Güven Gökmen T, Kalayci Y, Yaman A, Köksal F. Molecular characterization of methicillin-resistant Staphylococcus aureus strains by spa typing and pulsed field gel electrophoresis methods. BMC Microbiol 2018; 18: 17. https://doi.org/10.1186/s12866-018-1305-6.

    • Search Google Scholar
    • Export Citation
  • 39.

    Grundmann H, Schouls LM, Aanensen DM, Pluister GN, Tami A, Chlebowicz M, et al. The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: results of a second structured survey. Eurosurveillance 2014; 19: 20987. https://doi.org/10.2807/1560-7917.ES2014.19.49.20987.

    • Search Google Scholar
    • Export Citation
  • 40.

    Rijnders M, Deurenberg R, Boumans M, Hoogkamp-Korstanje J, Beisser P, Stobberingh E. Population structure of Staphylococcus aureus strains isolated from intensive care unit patients in The Netherlands over an 11-year period (1996 to 2006). J Clin Microbiol 2009; 47: 40905. https://doi.org/10.1128/JCM.00820-09.

    • Search Google Scholar
    • Export Citation
  • 41.

    Skraamm I, Moen AEF, Bukholm G. Nasal carriage of Staphylococcus aureus: frequency and molecular diversity in a randomly sampled Norwegian community population. APMIS 2011; 119: 5228. https://doi.org/10.1111/j.1600-0463.2011.02758.x.

    • Search Google Scholar
    • Export Citation
  • 42.

    Wurster JI, Bispo PJ, Van Tyne D, Cadorette JJ, Boody R, Gilmore MS. Staphylococcus aureus from ocular and otolaryngology infections are frequently resistant to clinically important antibiotics and are associated with lineages of community and hospital origins. PLoS One 2018; 13: e0208518. https://doi.org/10.1371/journal.pone.0208518.

    • Search Google Scholar
    • Export Citation
  • 43.

    Chamon RC, Iorio NLP, da Silva Ribeiro S, Cavalcante FS, Dos Santos KRN. Molecular characterization of Staphylococcus aureus isolates carrying the Panton-Valentine leukocidin genes from Rio de Janeiro hospitals. Diagn Microbiol Infect Dis 2015; 83: 3314. https://doi.org/10.1016/j.diagmicrobio.2015.09.004.

    • Search Google Scholar
    • Export Citation
  • 44.

    Hashemizadeh Z, Hadi N, Mohebi S, Kalantar-Neyestanaki D, Bazargani A. Characterization of SCCmec, spa types and Multi Drug Resistant of methicillin-resistant Staphylococcus aureus isolates among inpatients and outpatients in a referral hospital in Shiraz, Iran. BMC Res Notes 2019; 12: 16. https://doi.org/10.1186/s13104-019-4627-z.

    • Search Google Scholar
    • Export Citation
  • 45.

    Aggarwal S, Jena S, Panda S, Sharma S, Dhawan B, Nath G, et al. Antibiotic susceptibility, virulence pattern, and typing of Staphylococcus aureus strains isolated from variety of infections in India. Front Microbiol 2019; 10: 2763. https://doi.org/10.3389/fmicb.2019.02763.

    • Search Google Scholar
    • Export Citation
  • 46.

    Egyir B, Bentum J, Attram N, Fox A, Obeng-Nkrumah N, Appiah-Korang L, et al. Whole genome sequencing and antimicrobial resistance of staphylococcus aureus from surgical site infections in Ghana. Pathogens 2021; 10: 196. https://doi.org/10.3390/pathogens10020196.

    • Search Google Scholar
    • Export Citation
  • 47.

    Kateete DP, Asiimwe BB, Mayanja R, Mujuni B, Bwanga F, Najjuka CF, et al. Nasopharyngeal carriage, spa types and antibiotic susceptibility profiles of Staphylococcus aureus from healthy children less than 5 years in Eastern Uganda. BMC Infect Dis 2019; 19: 110. https://doi.org/10.1186/s12879-019-4652-5.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2022  
Web of Science  
Total Cites
WoS
689
Journal Impact Factor 1.5
Rank by Impact Factor

Immunology (Q4)
Microbiology (Q4)

Impact Factor
without
Journal Self Cites
1.3
5 Year
Impact Factor
1.7
Journal Citation Indicator 0.34
Rank by Journal Citation Indicator

Immunology (Q4)
Microbiology (Q4)

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0.333
Scimago Quartile Score

Immunology and Microbiology (miscellaneous) (Q3)
Infectious Diseases (Q3)
Medicine (miscellaneous) (Q3)
Microbiology (medical) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
General Immunology and Microbiology 29/53 (46th PCTL)
Infectious Diseases 186/304 (38th PCTL)
Microbiology 85/124 (31st PCTL)
Scopus
SNIP
0.484

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 0 0 0
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 387 12 7
May 2024 227 1 1
Jun 2024 121 1 1
Jul 2024 0 0 0