Authors:
Sarra Dhraief Laboratory of Microbiology, Children's Hospital Bechir Hamza of Tunis, Tunisia

Search for other papers by Sarra Dhraief in
Current site
Google Scholar
PubMed
Close
,
Khaoula Meftah Laboratory of Microbiology, Children's Hospital Bechir Hamza of Tunis, Tunisia
Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, Tunis, Tunisia

Search for other papers by Khaoula Meftah in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3312-8265
,
Samar Mhimdi Laboratory of Microbiology, Children's Hospital Bechir Hamza of Tunis, Tunisia
Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, Tunis, Tunisia

Search for other papers by Samar Mhimdi in
Current site
Google Scholar
PubMed
Close
,
Houyem Khiari Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, Tunis, Tunisia
Department of Epidemiology and Biostatistics, Salah Azaiz Institute, Tunis, Tunisia

Search for other papers by Houyem Khiari in
Current site
Google Scholar
PubMed
Close
,
Firas Aloui Laboratory of Microbiology, Children's Hospital Bechir Hamza of Tunis, Tunisia
Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, Tunis, Tunisia

Search for other papers by Firas Aloui in
Current site
Google Scholar
PubMed
Close
,
Aida Borgi Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, Tunis, Tunisia
Pediatric Intensive Care Unit, Children's Hospital Bechir Hamza of Tunis, Tunisia

Search for other papers by Aida Borgi in
Current site
Google Scholar
PubMed
Close
,
Sondes Haddad-Boubaker Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia

Search for other papers by Sondes Haddad-Boubaker in
Current site
Google Scholar
PubMed
Close
,
Amani Brik Laboratory of Microbiology, Children's Hospital Bechir Hamza of Tunis, Tunisia

Search for other papers by Amani Brik in
Current site
Google Scholar
PubMed
Close
,
Khaled Menif Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, Tunis, Tunisia
Pediatric Intensive Care Unit, Children's Hospital Bechir Hamza of Tunis, Tunisia

Search for other papers by Khaled Menif in
Current site
Google Scholar
PubMed
Close
,
Amel Kechrid Laboratory of Microbiology, Children's Hospital Bechir Hamza of Tunis, Tunisia

Search for other papers by Amel Kechrid in
Current site
Google Scholar
PubMed
Close
,
Aida Bouafsoun Laboratory of Microbiology, Children's Hospital Bechir Hamza of Tunis, Tunisia

Search for other papers by Aida Bouafsoun in
Current site
Google Scholar
PubMed
Close
, and
Hanen Smaoui Laboratory of Microbiology, Children's Hospital Bechir Hamza of Tunis, Tunisia
Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, Tunis, Tunisia

Search for other papers by Hanen Smaoui in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The worldwide burden of disease of bacterial meningitis remains high, despite the decreasing incidence following introduction of routine vaccination campaigns.

The aim of our study was to evaluate the epidemiological and bacteriological profile of paediatric bacterial meningitis (BM) in Tunisian children, during the period 2003–2019, following the implementation of Haemophilus influenzae type b (Hib) vaccine (April 2011) and before 10-valent pneumoccocal conjugate vaccine (PCV10) introduction to the childhood immunization program.

All bacteriologically confirmed cases of BM admitted to children's hospital of Tunis were recorded (January 2003 to April 2019). Serogroups of Neisseria meningitidis (Nm) and serotypes of Streptococcus pneumoniae (Sp) and H. influenzae (Hi) and antibiotic resistance were determined using conventional and molecular methods.

Among 388 cases, the most frequent species were Sp (51.3%), followed by Nm (27.5%) and Hi (16.8%). We observed a significant decrease in Hi BM rate during the conjugated Hib vaccine use period (P < 0.0001). The main pneumococcal serotypes were 14, 19F, 6B, 23F and 19A and the serotype coverage of PCV10, PCV13, PCV15 and PCV20 was 71.3 and 78.8%, 79.4 and 81.9% respectively. The most frequent Nm serogroup was B (83.1%). Most Hi strains were of serotype b (86.9%). High levels of resistance were found: Sp and Nm to penicillin (respectively 60.1 and 80%) and Hi to ampicillin (42.6%). All meningococcal and Hi isolates were susceptible to third-generation cephalosporins and 7.2% of pneumococcal strains had decreased susceptibility to these antibiotics.

The Hib conjugate vaccine decreased the rate of BM. Sp dominated the aetiology of BM in children in Tunisia. Conjugate vaccines introducing decreases not only BM cases but also antimicrobial resistance.

  • 1.

    World Health Organization. Defeating meningitis by 2030: a global road map. World Health Organization; 2021. https://www.who.int/publications/i/item/9789240026407.

    • Search Google Scholar
    • Export Citation
  • 2.

    World Health Organization & Centers for Disease Control and Prevention (U.S.). Laboratory methods for the diagnosis of meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae: WHO manual. 2nd ed. World Health Organization; 2011. https://apps.who.int/iris/handle/10665/70765.

    • Search Google Scholar
    • Export Citation
  • 3.

    Smaoui H, Tali-Maamar H, Zouhair S, Bouheraoua S, Mefteh K, Bouskraoui M, et al. Implementation of a prospective study for enhancing surveillance of invasive bacterial infections in North Africa. Int J Infect Dis 2022; 115: 1015. https://pubmed.ncbi.nlm.nih.gov/34843957/.

    • Search Google Scholar
    • Export Citation
  • 4.

    Schuchat A, Robinson K, Wenger JD, Harrison LH, Farley M, Reingold AL, et al. Bacterial meningitis in the United States in 1995. N Engl J Med 1997; 337(14): 9706. https://pubmed.ncbi.nlm.nih.gov/9395430/.

    • Search Google Scholar
    • Export Citation
  • 5.

    Slack MPE, Azzopardi HJ, Hargreaves RM, Ramsay ME. Enhanced surveillance of invasive Haemophilus influenzae disease in England, 1990 to 1996: impact of conjugate vaccines. Pediatr Infect Dis J 1998; 17(9 SUPPL.): S2047. https://pubmed.ncbi.nlm.nih.gov/9781764/.

    • Search Google Scholar
    • Export Citation
  • 6.

    McIntyre PB, O’Brien KL, Greenwood B, van de Beek D. Effect of vaccines on bacterial meningitis worldwide. Lancet 2012; 380(9854): 170311. https://pubmed.ncbi.nlm.nih.gov/23141619/.

    • Search Google Scholar
    • Export Citation
  • 7.

    Tin Tin Htar M, Madhava H, Balmer P, Christopoulou D, Menegas D, Bonnet E. A review of the impact of pneumococcal polysaccharide conjugate vaccine (7-valent) on pneumococcal meningitis. Adv Ther 2013; 30(8): 74862. https://pubmed.ncbi.nlm.nih.gov/24000099/.

    • Search Google Scholar
    • Export Citation
  • 8.

    Levy C, Varon E, Picard C, Béchet S, Martinot A, Bonacorsi S, et al. Trends of pneumococcal meningitis in children after introduction of the 13-valent pneumococcal conjugate vaccine in France. Pediatr Infect Dis J 2014; 33(12): 121621. https://pubmed.ncbi.nlm.nih.gov/25037044/.

    • Search Google Scholar
    • Export Citation
  • 9.

    Thabet L, Bousseta K, Kaabachi O, Smaoui H, Kechrid A. Bacteriological profile of bacterial meningitis in the Tunis children hospital. Med Mal Infect 2002; 32(1): 17. https://www.sciencedirect.com/science/article/pii/S0399077X01003067.

    • Search Google Scholar
    • Export Citation
  • 10.

    Mezghani S, Kassis M, Mahjoubi rhimi F, Damak J, Hammami A. Bacteriology of community acquired meningitis in Sfax, Tunisia. Med Mal Infect 2006; 36(2): 10510. https://pubmed.ncbi.nlm.nih.gov/16459040/.

    • Search Google Scholar
    • Export Citation
  • 11.

    Sfaihi L, Kamoun F, Kamoun T, Aloulou H, Mezghani S, Hammemi A, et al. Bacterial meningitis in children: epidemiological data and outcome. Tunis Med 2014; 92(2): 1416. https://pubmed.ncbi.nlm.nih.gov/24938236/.

    • Search Google Scholar
    • Export Citation
  • 12.

    Shinjoh M, Iwata S, Yagihashi T, Sato Y, Akita H, Takahashi T, et al. Recent trends in pediatric bacterial meningitis in Japan – a country where Haemophilus influenzae type b and Streptococcus pneumoniae conjugated vaccines have just been introduced. J Infect Chemother 2014; 20(8): 47783. https://pubmed.ncbi.nlm.nih.gov/24855913/.

    • Search Google Scholar
    • Export Citation
  • 13.

    Taha MK. Simultaneous approach for nonculture PCR-based identification and serogroup prediction of Neisseria meningitidis. J Clin Microbiol 2000; 38(2): 8557. https://pubmed.ncbi.nlm.nih.gov/10655397/.

    • Search Google Scholar
    • Export Citation
  • 14.

    Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol 2001; 39(4): 15538. https://pubmed.ncbi.nlm.nih.gov/11283086/.

    • Search Google Scholar
    • Export Citation
  • 15.

    Haddad-Boubaker S, Lakhal M, Fathallah C, Bouafsoun A, Kharrat M, Khemiri M, et al. Molecular diagnosis of bacterial meningitis by multiplex real time PCR in Tunisian children. J Infect Dev Ctries 2018; 12(4): 23543. https://pubmed.ncbi.nlm.nih.gov/31851632/.

    • Search Google Scholar
    • Export Citation
  • 16.

    Pai R, Gertz RE, Beall B. Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J Clin Microbiol 2006; 44(1): 12431. https://pubmed.ncbi.nlm.nih.gov/16390959/.

    • Search Google Scholar
    • Export Citation
  • 17.

    Brik A, Terrade A, Hong E, Deghmane A, Taha MK, Bouafsoun A, et al. Phenotypic and genotypic characterization of meningococcal isolates in Tunis, Tunisia: high diversity and impact on vaccination strategies. Int J Infect Dis 2020; 91: 738. https://pubmed.ncbi.nlm.nih.gov/31756567/.

    • Search Google Scholar
    • Export Citation
  • 18.

    Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 2010; 23(3): 46792. https://pubmed.ncbi.nlm.nih.gov/20610819/.

    • Search Google Scholar
    • Export Citation
  • 19.

    Swanson D. Meningitis. Pediatr Rev 2015; 36(12): 51424. https://pubmed.ncbi.nlm.nih.gov/26628732/.

  • 20.

    Ulanova M, Tsang RSW. Invasive Haemophilus influenzae disease: changing epidemiology and host-parasite interactions in the 21st century. Infect Genet Evol 2009; 9(4): 594605. https://pubmed.ncbi.nlm.nih.gov/19460326/.

    • Search Google Scholar
    • Export Citation
  • 21.

    van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E. Community-acquired bacterial meningitis. Nat Rev Dis Primer 2016; 2: 16074. https://pubmed.ncbi.nlm.nih.gov/27808261/.

    • Search Google Scholar
    • Export Citation
  • 22.

    Russo DO, Torres BR, Romanelli RMC, Rocha F de SV, Viegas ECC, Diniz LM de O. Haemophilus influenzae serotype a as a cause of meningitis in children in Brazil. Pediatr Infect Dis J 2022; 41(2): 10811. https://pubmed.ncbi.nlm.nih.gov/35017451/.

    • Search Google Scholar
    • Export Citation
  • 23.

    Wen S, Feng D, Chen D, Yang L, Xu Z. Molecular epidemiology and evolution of Haemophilus influenzae. Infect Genet Evol 2020; 80: 104205. https://pubmed.ncbi.nlm.nih.gov/31981610/.

    • Search Google Scholar
    • Export Citation
  • 24.

    Oueslati S, Smaoui H, Joubert G, Dabernat H, Kechrid A. Beta lactam resistance and molecular markers of 157 Haemophilus influenzae isolates from infants in Tunis. Can J Microbiol 2009; 55(5): 5159. https://pubmed.ncbi.nlm.nih.gov/19483779/.

    • Search Google Scholar
    • Export Citation
  • 25.

    Hsu HE, Shutt KA, Moore MR, Beall BW, Bennett NM, Craig AS, et al. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N Engl J Med 2009; 360(3): 24456. https://pubmed.ncbi.nlm.nih.gov/19144940/.

    • Search Google Scholar
    • Export Citation
  • 26.

    Steens A, Bergsaker MAR, Aaberge IS, Rønning K, Vestrheim DF. Prompt effect of replacing the 7-valent pneumococcal conjugate vaccine with the 13-valent vaccine on the epidemiology of invasive pneumococcal disease in Norway. Vaccine 2013; 31(52): 62328. https://pubmed.ncbi.nlm.nih.gov/24176490/.

    • Search Google Scholar
    • Export Citation
  • 27.

    Casado-Flores J, Aristegui J, de Liria CR, Martinón JM, Fernández C, Spanish Pneumococcal Meningitis Study Group. Clinical data and factors associated with poor outcome in pneumococcal meningitis. Eur J Pediatr 2006; 165(5): 2859. https://pubmed.ncbi.nlm.nih.gov/16333641/.

    • Search Google Scholar
    • Export Citation
  • 28.

    Thabet F, Tilouche S, Tabarki B, Amri F, Guediche MN, Sfar MT, et al. Pneumococcal meningitis mortality in children: prognostic factors in a serie of 73 cases. Arch Pediatr 2007; 14(4): 3347. https://pubmed.ncbi.nlm.nih.gov/17187969/.

    • Search Google Scholar
    • Export Citation
  • 29.

    Isturiz R, Sings HL, Hilton B, Arguedas A, Reinert RR, Jodar L. Streptococcus pneumoniae serotype 19A: worldwide epidemiology. Expert Rev Vaccin 2017; 16(10): 100727. https://pubmed.ncbi.nlm.nih.gov/28783380/.

    • Search Google Scholar
    • Export Citation
  • 30.

    Imöhl M, Möller J, Reinert RR, Perniciaro S, van der Linden M, Aktas O. Pneumococcal meningitis and vaccine effects in the era of conjugate vaccination: results of 20 years of nationwide surveillance in Germany. BMC Infect Dis 2015; 15: 61. https://pubmed.ncbi.nlm.nih.gov/25885764/.

    • Search Google Scholar
    • Export Citation
  • 31.

    Bingen E. Role of pneumococcus in pediatric infectious pathology. Pathol Biol 2002; 50(6): 3749. https://pubmed.ncbi.nlm.nih.gov/12168255/.

    • Search Google Scholar
    • Export Citation
  • 32.

    Varon E, Batah J. Rapport d’activité du Centre National de Référence du Pneumocoque Epidémiologie 2018–2019. France. IOP Publishing Physics Web; 2020. 88 p. http://www.https://cnr-pneumo.com/docman/rapports/46-2020-epidemiologie-2018-2019/file. Accessed 14 May 2022.

    • Search Google Scholar
    • Export Citation
  • 33.

    Taha MK, Presa J, Serra L. A review of the epidemiology of invasive meningococcal disease and vaccination strategies in North Africa. Int J Infect Dis 2021; 104: 18997. https://pubmed.ncbi.nlm.nih.gov/33227521/.

    • Search Google Scholar
    • Export Citation
  • 34.

    Smaoui H, Saguer A, Bouziri A, Fourati S, Chahed MK, Ben Jaballah N, et al. Neisseria meningitidis invasive infections in children in Tunis: about 79 cases. Arch Inst Pasteur Tunis 2011; 88(1–4): 3541. https://pubmed.ncbi.nlm.nih.gov/23461141/.

    • Search Google Scholar
    • Export Citation
  • 35.

    Tzanakaki G, Mastrantonio P. Aetiology of bacterial meningitis and resistance to antibiotics of causative pathogens in Europe and in the Mediterranean region. Int J Antimicrob Agents 2007; 29(6): 6219. https://pubmed.ncbi.nlm.nih.gov/17368858/.

    • Search Google Scholar
    • Export Citation
  • 36.

    Saguer A, Smaoui H, Taha MK, Kechrid A. Characterization of invasive Neisseria meningitidis strains isolated at the Children’s Hospital of Tunis, Tunisia. East Mediterr Health J 2016; 22(5): 3439. https://pubmed.ncbi.nlm.nih.gov/27553401/.

    • Search Google Scholar
    • Export Citation
  • 37.

    Fraser A, Gafter-Gvili A, Paul M, Leibovici L. Antibiotics for preventing meningococcal infections. The Cochrane Database Syst Rev 2006; 18: CD004785. Available from: https://pubmed.ncbi.nlm.nih.gov/17054214/.

    • Search Google Scholar
    • Export Citation
  • 38.

    Trestioreanu AZ, Fraser A, Gafter-Gvili A, Paul M, Leibovici L. Antibiotics for preventing meningococcal infections. Cochrane Database Syst Rev 2013; 10: CD004785. https://pubmed.ncbi.nlm.nih.gov/24163051/.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2022  
Web of Science  
Total Cites
WoS
689
Journal Impact Factor 1.5
Rank by Impact Factor

Immunology (Q4)
Microbiology (Q4)

Impact Factor
without
Journal Self Cites
1.3
5 Year
Impact Factor
1.7
Journal Citation Indicator 0.34
Rank by Journal Citation Indicator

Immunology (Q4)
Microbiology (Q4)

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0.333
Scimago Quartile Score

Immunology and Microbiology (miscellaneous) (Q3)
Infectious Diseases (Q3)
Medicine (miscellaneous) (Q3)
Microbiology (medical) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
General Immunology and Microbiology 29/53 (46th PCTL)
Infectious Diseases 186/304 (38th PCTL)
Microbiology 85/124 (31st PCTL)
Scopus
SNIP
0.484

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 0 0 0
May 2024 1254 11 12
Jun 2024 875 3 4