Authors:
Shahinda Rezk Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt

Search for other papers by Shahinda Rezk in
Current site
Google Scholar
PubMed
Close
,
Nourhan Ashraf Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt

Search for other papers by Nourhan Ashraf in
Current site
Google Scholar
PubMed
Close
,
Hassan Heshmat Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, 21561, Egypt

Search for other papers by Hassan Heshmat in
Current site
Google Scholar
PubMed
Close
,
Gamal Elsawaf Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt

Search for other papers by Gamal Elsawaf in
Current site
Google Scholar
PubMed
Close
, and
Amel Elsheredy Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt

Search for other papers by Amel Elsheredy in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6368-2596
Restricted access

Abstract

Bloodstream infections (BSIs) caused by multidrug-resistant bacteria are a critical life-threatening challenge which necessitates the urgency to trigger life-saving treatment in a timely manner. This study aimed to evaluate the time required for rapid detection of carbapenemase-producing Enterobacterales (CPE) directly from blood culture bottles to optimize empirical treatment of BSI, especially in pediatric and infant patients, using a cost-effective method. This study included 419 Gram-negative bacteria, of which Klebsiella pneumoniae and Escherichia coli were the most common CPE causing BSI in pediatric and neonatal patients. Phenotypic and genotypic resistance of the selected isolates (45 K. pneumoniae and 9 E. coli) were determined by VITEK-2 Compact system and PCR, respectively. BACT/ALERT bottles were spiked with isolates. Finally, colorimetric RESIST-BC assay and Vitek-2 compact system were evaluated for the rapid detection of carbapenem-resistant bacteria directly from positive blood culture bottles. All selected isolates were phenotypically resistant to carbapenems. PCR showed that blaNDM and blaOXA-48 were present in all isolates, blaVIM was present in 44.4%, while blaKPC and blaIMP were entirely absent. The RESIST-BC kit showed good agreement with PCR for blaNDM and blaOXA-48, demonstrating high sensitivity and specificity, but not with blaVIM. These findings point out that RESIST-BC assay demonstrated an exceptionally short detection time for CPE, completing all cases within the first hour after the blood culture bottles flagged positive. It is also superior in providing a clue for clinicians on antibiotic combinations that can be administered, depending on the type of β-lactamases detected, promptly and efficiently, with low expenses.

  • 1.

    Leal HF, Azevedo J, Silva GE, Amorim AM, de Roma LR, Arraes AC, et al. Bloodstream infections caused by multidrug-resistant gram-negative bacteria: epidemiological, clinical and microbiological features. BMC Infect Dis 2019; 19(1): 1–1.

    • Search Google Scholar
    • Export Citation
  • 2.

    Santoro A, Franceschini E, Meschiari M, Menozzi M, Zona S, Venturelli C, et al. Epidemiology and risk factors associated with mortality in consecutive patients with bacterial bloodstream infection: impact of MDR and XDR bacteria. Open Forum Infect Dis 2020; 7: ofaa461.

    • Search Google Scholar
    • Export Citation
  • 3.

    Sands K, Carvalho MJ, Portal E, Thomson K, Dyer C, Akpulu C. Characterization of antimicrobial-resistant gram-negative bacteria that cause neonatal sepsis in seven low-and middle-income countries. Nat Microbiol 2021; 6(4): 51223.

    • Search Google Scholar
    • Export Citation
  • 4.

    Hassuna NA, AbdelAziz RA, Zakaria A, Abdelhakeem M. Extensively-drug resistant Klebsiella pneumoniae recovered from neonatal sepsis cases from a major NICU in Egypt. Front Microbiol 2020; 11: 1375.

    • Search Google Scholar
    • Export Citation
  • 5.

    Ghaith DM, Zafer MM, Said HM, Elanwary S, Elsaban S, Al-Agamy MH, et al. Genetic diversity of carbapenem-resistant Klebsiella pneumoniae causing neonatal sepsis in intensive care unit, Cairo, Egypt. Eur J Clin Microbiol Infect Dis 2020; 39: 583591.

    • Search Google Scholar
    • Export Citation
  • 6.

    Lee YL, Chen HM, Hii M, Hsueh PR. Carbapenemase-producing Enterobacterales infections: recent advances in diagnosis and treatment. Int J Antimicrob Agents 2022; 59(2): 106528.

    • Search Google Scholar
    • Export Citation
  • 7.

    Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 2017; 215(suppl_1): S2836.

    • Search Google Scholar
    • Export Citation
  • 8.

    Tang Y, Xu C, Xiao H, Wang L, Cheng Q, Li X. Gram-negative bacteria bloodstream infections in patients with hematological malignancies–the impact of pathogen type and patterns of antibiotic resistance: a retrospective cohort study. Infect Drug Resist 2021; 12: 311524.

    • Search Google Scholar
    • Export Citation
  • 9.

    Baer D, Azrad M, Saleh N, Peretz A. Detection of carbapenem-resistant enterobacterales in simulated blood culture in 15 minutes. Life 2021; 11(2): 145.

    • Search Google Scholar
    • Export Citation
  • 10.

    Banerjee R, Humphries R. Clinical and laboratory considerations for the rapid detection of carbapenem-resistant Enterobacteriaceae. Virulence 2017; 8(4): 42739.

    • Search Google Scholar
    • Export Citation
  • 11.

    Boutal H, Vogel A, Bernabeu S, Devilliers K, Creton E, Cotellon G, et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP-and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2018; 3(4): 90915.

    • Search Google Scholar
    • Export Citation
  • 12.

    Hong J, Kang D, Kim D. Performance evaluation of the newly developed in vitro rapid diagnostic test for detecting OXA-48-like, KPC-, NDM-, VIM-and IMP-type carbapenemases: the RESIST-5 OKNVI multiplex lateral flow assay. Antibiotics 2021; 10(4): 460.

    • Search Google Scholar
    • Export Citation
  • 13.

    Kumar M, Tandel K, Shergill SP, Bhalla GS, Mahajan P, Swarnim V, et al. Rapid detection of carbapenem resistance among gram-negative organisms directly from positive blood culture bottles. Med J Armed Forces India 2023; 79(3): 26774.

    • Search Google Scholar
    • Export Citation
  • 14.

    Taha R, Kader O, Shawky S, Rezk S. Ceftazidime-Avibactam plus aztreonam synergistic combination tested against carbapenem-resistant Enterobacterales characterized phenotypically and genotypically: a glimmer of hope. Ann Clin Microbiol Antimicrob 2023; 122(1): 21.

    • Search Google Scholar
    • Export Citation
  • 15.

    Abbasi E, Ghaznavi-Rad E. High frequency of NDM-1 and OXA-48 carbapenemase genes among Klebsiella pneumoniae isolates in central Iran. BMC Microbiol 2023; 23(1): 98.

    • Search Google Scholar
    • Export Citation
  • 16.

    El-Kholy AA, Girgis SA, Shetta MA, Abdel-Hamid DH, Elmanakhly AR. Molecular characterization of multidrug-resistant gram-negative pathogens in three tertiary hospitals in Cairo, Egypt. Eur J Clin Microbiol Infect Dis 2020; 39: 98792.

    • Search Google Scholar
    • Export Citation
  • 17.

    Kriger O, Shatzman-Steuerman R, Smollan G, Belausov N, Sarkisian G, Amit S. Rapid detection of carbapenemase-producing enterobacteriaceae from blood culture bottles of known CPE carriers: real-world experience. J Pediatr Infect Dis 2022 Jan 1; 41(1): 457.

    • Search Google Scholar
    • Export Citation
  • 18.

    Hamprecht A, Vehreschild JJ, Seifert H, Saleh A. Rapid detection of NDM, KPC and OXA-48 carbapenemases directly from positive blood cultures using a new multiplex immunochromatographic assay. PLoS One 2018; 13(9): e0204157.

    • Search Google Scholar
    • Export Citation
  • 19.

    Lima-Morales DD, Ávila H, Soldi T, Dalmolin TV, Lutz L, Aquino V, et al. Rapid detection of carbapenemase production directly from blood culture by colorimetric methods: evaluation in a routine microbiology laboratory. J Clin Microbiol 2018; 56(9): 10128.

    • Search Google Scholar
    • Export Citation
  • 20.

    Meier M, Hamprecht A. Systematic comparison of four methods for detection of carbapenemase-producing Enterobacterales directly from blood cultures. J Clin Microbiol 2019; 57(11): 10128.

    • Search Google Scholar
    • Export Citation
  • 21.

    Weinstein MP, Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 2021.

  • 22.

    Meheissen M, Okasha H. Verification of direct methods for detection of carbapenemase producing Enterobacteriaceae from blood cultures. Microbes Infect Dis 2022; 3(3): 687692.

    • Search Google Scholar
    • Export Citation
  • 23.

    De Cueto M, Ceballos E, Martinez-Martinez L, Perea EJ, Pascual A. Use of positive blood cultures for direct identification and susceptibility testing with the Vitek 2 system. J Clin Microbiol 2004; 42(8): 37348.

    • Search Google Scholar
    • Export Citation
  • 24.

    Micó M, Navarro F, de Miniac D, González Y, Brell A, López C, et al. Efficacy of the FilmArray blood culture identification panel for direct molecular diagnosis of infectious diseases from samples other than blood. J Med Microbiol 2015; 64(12): 14818.

    • Search Google Scholar
    • Export Citation
  • 25.

    Ramsamy Y, Mlisana KP, Amoako DG, Abia AL, Ismail A, Allam M, et al. Mobile genetic elements-mediated Enterobacterales-associated carbapenemase antibiotic resistance genes propagation between the environment and humans: a One Health South African study. Sci Total Environ 2022; 1(806): 150641.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2022  
Web of Science  
Total Cites
WoS
689
Journal Impact Factor 1.5
Rank by Impact Factor

Immunology (Q4)
Microbiology (Q4)

Impact Factor
without
Journal Self Cites
1.3
5 Year
Impact Factor
1.7
Journal Citation Indicator 0.34
Rank by Journal Citation Indicator

Immunology (Q4)
Microbiology (Q4)

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0.333
Scimago Quartile Score

Immunology and Microbiology (miscellaneous) (Q3)
Infectious Diseases (Q3)
Medicine (miscellaneous) (Q3)
Microbiology (medical) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
General Immunology and Microbiology 29/53 (46th PCTL)
Infectious Diseases 186/304 (38th PCTL)
Microbiology 85/124 (31st PCTL)
Scopus
SNIP
0.484

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 307 12 18
May 2024 92 2 3
Jun 2024 0 0 0