Authors:
Omer Faruk Cetiner Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye

Search for other papers by Omer Faruk Cetiner in
Current site
Google Scholar
PubMed
Close
,
Mehmet Hora Department of Bioinformatics Systems Biology, Institute of Health Sciences, Erciyes University, Kayseri, Türkiye

Search for other papers by Mehmet Hora in
Current site
Google Scholar
PubMed
Close
,
Ibrahim Halil Kafadar Department of Orthopedics and Traumatology, Erciyes University, Kayseri, Türkiye

Search for other papers by Ibrahim Halil Kafadar in
Current site
Google Scholar
PubMed
Close
,
Aysegul Ulu Kilic Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye

Search for other papers by Aysegul Ulu Kilic in
Current site
Google Scholar
PubMed
Close
, and
Aycan Gundogdu Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
Metagenomics Laboratory, Genome and Stem Cell Center (GenKok), Erciyes University, Kayseri, Türkiye

Search for other papers by Aycan Gundogdu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2806-8464
Restricted access

Abstract

Prosthetic joint infection (PJI) and aseptic loosening (AL) are common complications of total joint arthroplasty. An accumulation of evidence indicates the presence of microbial communities on prosthetic implants, but the overall microbial profile is unclear. In this study, we aimed to investigate the differences in the microbial composition of prosthetic implants obtained from PJI and AL patients using the 16S rRNA sequencing method. Patients who underwent revision hip, knee, or shoulder arthroplasty caused by PJI (n = 20) or AL (n = 10) were enrolled in the study. 16S rRNA sequencing targeting the V3–V4 region was performed on the microbial specimens collected from synovial fluid, periprosthetic deep-tissue, and biofilm during the revision surgery. The sequenced raw data were analysed for microbial composition and ecological and differential abundance analyses using bioinformatics tools. The AL group had relatively balanced and higher diversity, with Staphylococcus, Streptococcus, and Veillonella being prominent. In the PJI group, Staphylococcus and Pseudomonas were predominant, especially in deep-tissue samples and biofilm samples, respectively. The differential abundance analysis identified 15 and 2 distinctive taxa in the AL and PJI groups, respectively. Our findings provided preliminary insights supporting the existence of periprosthetic microbiota in orthopedic implants and explaining the differences in microbial composition between the AL and PJI groups.

Supplementary Materials

    • Supplemental Material
  • 1.

    Singh JA, Yu S, Chen L, Cleveland JD. Rates of total joint replacement in the United States: future projections to 2020–2040 using the national inpatient sample. The J Rheumatol 2019; 46(9): 11341140.

    • Search Google Scholar
    • Export Citation
  • 2.

    Beswick AD, Wylde V, Gooberman-Hill R, Blom A, Dieppe P. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open 2012; 2(1): e000435.

    • Search Google Scholar
    • Export Citation
  • 3.

    Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev 2014; 27(2): 302345.

  • 4.

    Bellova P, Knop-Hammad V, Königshausen M, Mempel E, Frieler S, Gessmann J, et al. Sonication of retrieved implants improves sensitivity in the diagnosis of periprosthetic joint infection. BMC Musculoskelet Disord 2019; 20(1): 623.

    • Search Google Scholar
    • Export Citation
  • 5.

    Portillo ME, Sancho I. Advances in the microbiological diagnosis of prosthetic joint infections. Diagnostics 2023; 13(4): 809.

  • 6.

    Wasko MK, Goodman SB. Emperor's new clothes: is particle disease really infected particle disease? J Orthopaedic Res 2016; 34(9): 14971504.

    • Search Google Scholar
    • Export Citation
  • 7.

    Clarkson SJ, Goswami K, Parvizi J. The microbiome of the joint. In: Hansen E., Kühn K-D, editors. Essentials of cemented knee arthroplasty. Berlin, Heidelberg: Springer Berlin Heidelberg; 2022. p. 101107.

    • Search Google Scholar
    • Export Citation
  • 8.

    Abdeen A, Della Valle CJ, Kendoff D, Chen AF. The paradox of prosthetic joint infection and the microbiome: are some bacteria actually helpful? Arthroplast Today 2022; 13: 116119.

    • Search Google Scholar
    • Export Citation
  • 9.

    Favazzo LJ, Hendesi H, Villani DA, Soniwala S, Dar Q-A, Schott EM, et al. The gut microbiome-joint connection: implications in osteoarthritis. Curr Opin Rheumatol 2020; 32(1): 92101.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bereza P, Ekiel A, Auguściak-Duma A, Aptekorz M, Wilk I, Kusz D, et al. Comparison of cultures and 16S rRNA sequencing for identification of bacteria in two-stage revision arthroplasties: preliminary report. BMC Musculoskelet Disord 2016; 17(1): 138.

    • Search Google Scholar
    • Export Citation
  • 11.

    Carr C, Wilcox H, Burton JP, Menon S, Al KF, O'Gorman D, et al. Deciphering the low abundance microbiota of presumed aseptic hip and knee implants. PLoS One 2021; 16(9): e0257471.

    • Search Google Scholar
    • Export Citation
  • 12.

    Tarabichi M, Shohat N, Goswami K, Alvand A, Silibovsky R, Belden K, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing. JBJS 2018; 100(2): 147154.

    • Search Google Scholar
    • Export Citation
  • 13.

    Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 2018; 33(5): 13091314.e2.

    • Search Google Scholar
    • Export Citation
  • 14.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13(7): 581583.

    • Search Google Scholar
    • Export Citation
  • 15.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2012; 41(D1): D590D596.

    • Search Google Scholar
    • Export Citation
  • 16.

    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol 2011; 12(6): R60.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hodges NA, Sussman EM, Stegemann JP. Aseptic and septic prosthetic joint loosening: impact of biomaterial wear on immune cell function, inflammation, and infection. Biomaterials 2021; 278: 121127.

    • Search Google Scholar
    • Export Citation
  • 18.

    Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, et al. Sonication of removed hip and knee prostheses for diagnosis of infection. New Engl J Med 2007; 357(7): 654663.

    • Search Google Scholar
    • Export Citation
  • 19.

    Moojen DJ, van Hellemondt G, Vogely HC, Burger BJ, Walenkamp GH, Tulp NJ, et al. Incidence of low-grade infection in aseptic loosening of total hip arthroplasty. Acta Orthop 2010; 81(6): 66773.

    • Search Google Scholar
    • Export Citation
  • 20.

    Meyer ST, Ebeling A, Eisenhauer N, Hertzog L, Hillebrand H, Milcu A, et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 2016; 7(12): e01619.

    • Search Google Scholar
    • Export Citation
  • 21.

    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489(7415): 22030.

    • Search Google Scholar
    • Export Citation
  • 22.

    Dempsey KE, Riggio MP, Lennon A, Hannah VE, Ramage G, Allan D, et al. Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture. Arthritis Res Ther 2007; 9(3): R46.

    • Search Google Scholar
    • Export Citation
  • 23.

    Li H, Fu J, Erlong N, Li R, Xu C, Hao L, et al. Characterization of periprosthetic environment microbiome in patients after total joint arthroplasty and its potential correlation with inflammation. BMC Infect Dis 2023; 23(1): 423.

    • Search Google Scholar
    • Export Citation
  • 24.

    Tai DBG, Patel R, Abdel MP, Berbari EF, Tande AJ. Microbiology of hip and knee periprosthetic joint infections: a database study. Clin Microbiol Infect 2022; 28(2): 255259.

    • Search Google Scholar
    • Export Citation
  • 25.

    Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol 2008; 322: 20728.

  • 26.

    Seng P, Barbe M, Pinelli PO, Gouriet F, Drancourt M, Minebois A, et al. Staphylococcus caprae bone and joint infections: a re-emerging infection? Clin Microbiol Infect 2014; 20(12): O1052O1058.

    • Search Google Scholar
    • Export Citation
  • 27.

    Domashenko P, Foukarakis G, Kenanidis E, Tsiridis E. A rare case of Staphylococcus caprae-caused periprosthetic joint infection following total hip arthroplasty: a literature review and antibiotic treatment algorithm suggestion. Cureus 2023; 15(5).

    • Search Google Scholar
    • Export Citation
  • 28.

    Vilchez F, Martínez-Pastor JC, García-Ramiro S, Bori G, Maculé F, Sierra J, et al. Outcome and predictors of treatment failure in early post-surgical prosthetic joint infections due to Staphylococcus aureus treated with debridement. Clin Microbiol Infect 2011; 17(3): 439444.

    • Search Google Scholar
    • Export Citation
  • 29.

    Shah NB, Osmon DR, Steckelberg JM, Sierra RJ, Walker RC, Tande AJ, et al. Pseudomonas prosthetic joint infections: a review of 102 episodes. J Bone Jt Infect 2016; 1: 2530.

    • Search Google Scholar
    • Export Citation
  • 30.

    Cerioli M, Batailler C, Conrad A, Roux S, Perpoint T, Becker A, et al. Pseudomonas aeruginosa implant-associated bone and joint infections: experience in a regional reference center in France. Front Med (Lausanne) 2020; 7: 513242.

    • Search Google Scholar
    • Export Citation
  • 31.

    Shah N, Osmon D, Tande AJ, Steckelberg J, Sierra R, Walker R, et al. Clinical and microbiological characteristics of Bacteroides prosthetic joint infections. J Bone Jt Infect 2017; 2(3): 122126.

    • Search Google Scholar
    • Export Citation
  • 32.

    Peng HM, Zhou ZK, Wang F, Yan SG, Xu P, Shang XF, et al. Microbiology of periprosthetic hip and knee infections in surgically revised cases from 34 centers in Mainland China. Infect Drug Resist 2021; 14: 24112418.

    • Search Google Scholar
    • Export Citation
  • 33.

    Gren C, Spiegelhauer MR, Rotbain EC, Ehmsen BK, Kampmann P, Andersen LP. Ruminococcus gnavus bacteraemia in a patient with multiple haematological malignancies. Access Microbiol 2019; 1(8): e000048.

    • Search Google Scholar
    • Export Citation
  • 34.

    Zaninetti-Schaerer A, Van Delden C, Genevay S, Gabay C. Total hip prosthetic joint infection due to Veillonella species. Joint Bone Spine 2004; 71(2): 161163.

    • Search Google Scholar
    • Export Citation
  • 35.

    Medel-Plaza M, Auñón A, Blanco A, García-Cañete J, Salar-Vidal L, Esteban J. Periprosthetic joint infection caused by Haemophilus parainfluenzae. Case report and literature review. Rev Esp Quimioter 2023; 36(3): 325328.

    • Search Google Scholar
    • Export Citation
  • 36.

    Browning S, Walker HN, Ryan T, Pickles R, Loftus M, Trubiano JA, et al. Treatment of Neisseria meningitidis prosthetic joint infections with short-course antibiotics: three cases and a literature review. J Bone Jt Infect 2020; 6(2): 3337.

    • Search Google Scholar
    • Export Citation
  • 37.

    Cazanave C, Greenwood-Quaintance KE, Hanssen AD, Karau MJ, Schmidt SM, Urena EOG, et al. Rapid molecular microbiologic diagnosis of prosthetic joint infection. J Clin Microbiol 2013; 51(7): 22802287.

    • Search Google Scholar
    • Export Citation
  • 38.

    Bereza PL, Ekiel A, Auguściak-Duma A, Aptekorz M, Wilk I, Kusz DJ, et al. Identification of silent prosthetic joint infection: preliminary report of a prospective controlled study. Int Orthopaedics 2013; 37(10): 20372043.

    • Search Google Scholar
    • Export Citation
  • 39.

    Kherabi Y, Zeller V, Kerroumi Y, Meyssonnier V, Heym B, Lidove O, et al. Streptococcal and Staphylococcus aureus prosthetic joint infections: are they really different? BMC Infect Dis 2022; 22(1): 555.

    • Search Google Scholar
    • Export Citation
  • 40.

    Huotari K, Vuorinen M, Rantasalo M. High cure rate for acute streptococcal prosthetic joint infections treated with debridement, antimicrobials, and implant retention in a specialized tertiary care center. Clin Infect Dis 2018; 67(8): 12881290.

    • Search Google Scholar
    • Export Citation
  • 41.

    Klein R, Dababneh AS, Palraj BR. Streptococcus gordonii prosthetic joint infection in the setting of vigorous dental flossing. BMJ Case Rep 2015; 2015.

    • Search Google Scholar
    • Export Citation
  • 42.

    Fenelon C, Galbraith JG, Dalton DM, Masterson E. Streptococcus gordonii—a rare cause of prosthetic joint infection in a total hip replacement. J Surg Case Rep 2017; 2017(1).

    • Search Google Scholar
    • Export Citation
  • 43.

    Prasad V, Washburn F, Barouni B, Saeed M. A rare case of prosthetic joint infection with Streptococcus gordonii. Am J Case Rep 2022; 23: e937271.

    • Search Google Scholar
    • Export Citation
  • 44.

    Poppleton DI, Duchateau M, Hourdel V, Matondo M, Flechsler J, Klingl A, et al. Outer membrane proteome of Veillonella parvula: a Diderm Firmicute of the human microbiome. Front Microbiol 2017; 8: 1215.

    • Search Google Scholar
    • Export Citation
  • 45.

    Marchandin H, Jean-Pierre H, Carrière C, Canovas F, Darbas H, Jumas-Bilak E. Prosthetic joint infection due to Veillonella dispar. Eur J Clin Microbiol Infect Dis 2001; 20(5): 340342.

    • Search Google Scholar
    • Export Citation
  • 46.

    Libertin CR, Peterson JH, Brodersen MP, Huff T. A case of penicillin-resistant Veillonella prosthetic joint infection of the knee. Case Rep Orthop 2016; 2016: 7171947.

    • Search Google Scholar
    • Export Citation
  • 47.

    Shah S, Havlichek D. Native joint septic arthritis with Veillonella species. BMJ Case Rep 2019; 12(5).

  • 48.

    Boisrenoult P. Cutibacterium acnes prosthetic joint infection: diagnosis and treatment. Orthop Traumatol Surg Res 2018; 104(1s): S19s24.

    • Search Google Scholar
    • Export Citation
  • 49.

    Salar-Vidal L, Martin-Garcia M, Auñón A, Esteban J. Cutibacterium spp. isolated from orthopaedic implant-associated infection: a not-so-slowly growing organism. Enferm Infecc Microbiol Clin (Engl Ed), 2021; 39(6): 287290.

    • Search Google Scholar
    • Export Citation
  • 50.

    Ponraj DS, Lund M, Lange J, Poehlein A, Himmelbach A, Falstie-Jensen T, et al. Shotgun sequencing of sonication fluid for the diagnosis of orthopaedic implant-associated infections with Cutibacterium acnes as suspected causative agent. Front Cell Infect Microbiol 2023; 13.

    • Search Google Scholar
    • Export Citation
  • 51.

    Renz N, Mudrovcic S, Perka C, Trampuz A. Orthopedic implant-associated infections caused by Cutibacterium spp. - a remaining diagnostic challenge. PLoS One 2018; 13(8): e0202639.

    • Search Google Scholar
    • Export Citation
  • 52.

    Tabaja H, Tai DBG, Beam E, Abdel MP, Tande AJ. Clinical profile of monomicrobial Corynebacterium hip and knee periprosthetic joint infections. Open Forum Infect Dis 2022; 9(7).

    • Search Google Scholar
    • Export Citation
  • 53.

    Seutz Y, Bäcker H, Akgün D, Adelhoefer S, Kriechling P, Gonzalez MR, et al. Corynebacterium periprosthetic joint infection: a systematic review of 52 cases at 2.5 years follow-up. Arch Orthopaedic Trauma Surg 2023; 143(9): 55275538.

    • Search Google Scholar
    • Export Citation
  • 54.

    Roux V, Drancourt M, Stein A, Riegel P, Raoult D, Scola BL. Corynebacterium species Isolated from Bone and joint infections Identified by 16S rRNA gene sequence analysis. J Clin Microbiol 2004; 42(5): 22312233.

    • Search Google Scholar
    • Export Citation
  • 55.

    Romero-Figueroa MdS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G. Gut-joint axis: gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol 2023; 13.

    • Search Google Scholar
    • Export Citation
  • 56.

    Berthelot J-M, Sellam J, Maugars Y, Berenbaum F. Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis. RMD Open 2019; 5(2): e001037.

    • Search Google Scholar
    • Export Citation
  • 57.

    Kennedy KM, de Goffau MC, Perez-Munoz ME, Arrieta MC, Backhed F, Bork P, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613(7945): 639649.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2022  
Web of Science  
Total Cites
WoS
689
Journal Impact Factor 1.5
Rank by Impact Factor

Immunology (Q4)
Microbiology (Q4)

Impact Factor
without
Journal Self Cites
1.3
5 Year
Impact Factor
1.7
Journal Citation Indicator 0.34
Rank by Journal Citation Indicator

Immunology (Q4)
Microbiology (Q4)

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0.333
Scimago Quartile Score

Immunology and Microbiology (miscellaneous) (Q3)
Infectious Diseases (Q3)
Medicine (miscellaneous) (Q3)
Microbiology (medical) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
General Immunology and Microbiology 29/53 (46th PCTL)
Infectious Diseases 186/304 (38th PCTL)
Microbiology 85/124 (31st PCTL)
Scopus
SNIP
0.484

2021  
Web of Science  
Total Cites
WoS
696
Journal Impact Factor 2,298
Rank by Impact Factor Immunology 141/161
Microbiology 118/136
Impact Factor
without
Journal Self Cites
2,143
5 Year
Impact Factor
1,925
Journal Citation Indicator 0,39
Rank by Journal Citation Indicator Immunology 146/177
Microbiology 129/157
Scimago  
Scimago
H-index
29
Scimago
Journal Rank
0,362
Scimago Quartile Score Immunology and Microbiology (miscellaneous) (Q3)
Medicine (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
3,6
Scopus
CIte Score Rank
General Immunology and Microbiology 26/56 (Q2)
Infectious Diseases 149/295 (Q3)
Microbiology (medical) 66/118 (Q3)
Scopus
SNIP
0,598

2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 680 EUR / 832 USD
Print + online subscription: 760 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 523 3 2
May 2024 204 1 2
Jun 2024 0 0 0