Authors:
Amita Rao Nitte (Deemed to be University), AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), Department of Periodontics, Deralakatte, Mangaluru-575018, India

Search for other papers by Amita Rao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7064-6841
and
Subramanyam Kodangala Department of Cardiology, Srinivas Institute of Medical Sciences and Research Centre, Mangalore, India

Search for other papers by Subramanyam Kodangala in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is a plethora of evidence that suggests infection may either directly or indirectly trigger chronic inflammatory processes which may then act as a risk factor for diabetes mellitus and atherosclerosis. Inflammatory periodontal disease like periodontitis, is among the most prevalent oral infectious disease. It affects the tissues that support the teeth and has reportedly been linked to systemic conditions like diabetes mellitus and atherosclerosis. The onset and progression of periodontitis is significantly influenced by the plaque-biofilm and the host-inflammatory response to it. Evidence from numerous studies included in this review supports the hypothesis that there is an association between periodontal pathogens and systemic conditions like diabetes mellitus and atherosclerosis. An overview of some of the periodontal pathogens associated with periodontitis and the proposed mechanisms by which these pathogens can evade and invade the human defence system triggering the onset of chronic diseases like diabetes mellitus and atherosclerosis are presented in this article.

  • 1.

    Gaffen SL, Hajishengallis G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res 2008; 87(9): 817828. https://doi.org/10.1177/154405910808700908.

    • Search Google Scholar
    • Export Citation
  • 2.

    Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol 2012; 13(5): 465473. https://doi.org/10.1038/ni.2260.

    • Search Google Scholar
    • Export Citation
  • 3.

    Moore WE, Holdeman LV, Smibert RM, Hash DE, Burmeister JA, Ranney RR. Bacteriology of severe periodontitis in young adult humans. Infect Immun 1982; 38(3): 11371148. https://doi.org/10.1128/iai.38.3.1137-1148.1982.

    • Search Google Scholar
    • Export Citation
  • 4.

    Socransky SS. Microbiology of periodontal disease-present status and future considerations. J Periodontol 1977; 48(9): 497504. https://doi.org/10.1902/jop.1977.48.9.497.

    • Search Google Scholar
    • Export Citation
  • 5.

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207214. https://doi.org/10.1038/nature11234.

    • Search Google Scholar
    • Export Citation
  • 6.

    Acharya A, Chan Y, Kheur S, Jin LJ, Watt RM, Mattheos N. Salivary microbiome in non-oral disease: a summary of evidence and commentary. Arch Oral Biol 2017; 83: 169173. https://doi.org/10.1016/j.archoralbio.2017.07.019.

    • Search Google Scholar
    • Export Citation
  • 7.

    Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018; 16(12): 745759.

    • Search Google Scholar
    • Export Citation
  • 8.

    Finlay BB. Cellular microbiology in the 21st century. Future Microbiol 2006; 1(4): 359361.

  • 9.

    Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol 2012; 10(10): 717725.

  • 10.

    Schenkein HA, Papapanou PN, Genco R, Sanz M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontol 2000 2020; 83(1): 90106. https://doi.org/10.1111/prd.12304.

    • Search Google Scholar
    • Export Citation
  • 11.

    Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontol 2000 2006; 40: 1128. https://doi.org/10.1111/j.1600-0757.2005.00141.x.

    • Search Google Scholar
    • Export Citation
  • 12.

    Parahitiyawa NB, Jin LJ, Leung WK, Yam WC, Samaranayake LP. Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev 2009; 22(1): 4664. Table of Contents. https://doi.org/10.1128/CMR.00028-08.

    • Search Google Scholar
    • Export Citation
  • 13.

    Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998; 25(2): 134144. https://doi.org/10.1111/j.1600-051x.1998.tb02419.x.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lamont RJ, Jenkinson HF. Subgingival colonization by Porphyromonas gingivalis. Oral Microbiol Immunol 2000; 15(6): 3419. https://doi.org/10.1034/j.1399-302x.2000.150601.x.

    • Search Google Scholar
    • Export Citation
  • 15.

    Holt SC, Kesavalu L, Walker S, Genco CA. Virulence factors in Porphyromonas gingivalis. Periodontol 2000 1999; 20: 168238.

  • 16.

    Kobayashi-Sakamoto M, Isogai E, Hirose K. Porphyromonas gingivalis modulates the production of interleukin 8 and monocyte chemotactic protein 1 in human vascular endothelial cells. Curr Microbiol 2003; 46: 109124.

    • Search Google Scholar
    • Export Citation
  • 17.

    Inomata M, Ishihara Y, Matsuyama T, Imamura T, Maruyama I, Noguchi T, et al. Degradation of vascular endothelial thrombomodulin by arginine- and lysine-specific cysteine proteases from Porphyromonas gingivalis. J Periodontol 2009; 80(9): 15117. https://doi.org/10.1902/jop.2009.090114.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kim SR, Jeon HJ, Park HJ, Kim MK, Choi WS, Jang HO, et al. Glycyrrhetinic acid inhibits Porphyromonas gingivalis lipopolysaccharide-induced vascular permeability via the suppression of interleukin-8. Inflamm Res 2013; 62(2): 14554. https://doi.org/10.1007/s00011-012-0560-5.

    • Search Google Scholar
    • Export Citation
  • 19.

    Farrugia C, Stafford GP, Murdoch C. Porphyromonas gingivalis outer membrane vesicles increase vascular permeability. J Dent Res 2020; 99(13): 1494501. https://doi.org/10.1177/0022034520943187.

    • Search Google Scholar
    • Export Citation
  • 20.

    Kadowaki T, Yoneda M, Okamoto K, Maeda K, Yamamoto K. Purification and characterization of a novel arginine- specific cysteine proteinase (argingipain) involved in the pathogenesis of periodontal disease from the culture supernatant of Porphyromonas gingivalis. J Biol Chem 1994; 269: 213712137.

    • Search Google Scholar
    • Export Citation
  • 21.

    Listgarten MA. Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. J Periodontol 1976; 47(1): 118. https://doi.org/10.1902/jop.1976.47.1.1.

    • Search Google Scholar
    • Export Citation
  • 22.

    Weinberg A, Holt SC. Chemical and biological activities of a 64-kilodalton outer sheath protein from Treponema denticola strains. J Bacteriol 1991; 173(21): 69356947. https://doi.org/10.1128/jb.173.21.6935-6947.1991.

    • Search Google Scholar
    • Export Citation
  • 23.

    Ishihara K. Virulence factors of Treponema denticola. Periodontol 2000 2010; 54(1): 117135.

  • 24.

    Diamond G, Beckloff N, Ryan LK. Host defense peptides in the oral cavity and the lung: similarities and differences. J Dent Res 2008; 87(10): 915927.

    • Search Google Scholar
    • Export Citation
  • 25.

    Brissette CA, Pham TT, Coats SR, Darveau RP, Lukehart SA. Treponema denticola does not induce production of common innate immune mediators from primary gingival epithelial cells. Oral Microbiol Immunol 2008; 23: 474481.

    • Search Google Scholar
    • Export Citation
  • 26.

    Fenno JC, Tamura M, Hannam PM, Wong GW, Chan RA, McBride BC. Identification of a Treponema denticola OppA homologue that binds host proteins present in the subgingival environment. Infect Immun 2000 Apr; 68(4): 188492. https://doi.org/10.1128/IAI.68.4.1884-1892.2000.

    • Search Google Scholar
    • Export Citation
  • 27.

    Fenno JC, Hannam PM, Leung WK, Tamura M, Uitto VJ, McBride BC. Cytopathic effects of the major surface protein and the chymotrypsin like protease of Treponema denticola. Infect Immun 1998; 66(5): 18691877. https://doi.org/10.1128/IAI.66.5.1869-1877.1998.

    • Search Google Scholar
    • Export Citation
  • 28.

    Leung WK, Haapasalo M, Uitto V-J, Hannam PM, McBride BC. The surface proteinase of Treponema denticola may mediate attachment of the bacteria to epithelial cells. Anaerobe 1996; 2(1): 3946.

    • Search Google Scholar
    • Export Citation
  • 29.

    Kimizuka R, Kato T, Ishihara K, Okuda K. Mixed infections with Porphyromonas gingivalis and Treponema denticola cause excessive inflammatory responses in a mouse pneumonia model compared with mono-infections. Microbes Infect 2003; 5(15): 13571362. https://doi.org/10.1016/j.micinf.2003.09.015.

    • Search Google Scholar
    • Export Citation
  • 30.

    Nixon CS, Steffen MJ, Ebersole JL. Cytokine responses to Treponema pectinovorum and Treponema denticola in human gingival fibroblasts. Infect Immun 2000; 68(9): 528492. https://doi.org/10.1128/IAI.68.9.5284-5292.2000.

    • Search Google Scholar
    • Export Citation
  • 31.

    Miyamoto M, Ishihara K, Okuda K. The Treponema denticola surface protease dentilisin degrades interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor alpha. Infect Immun 2006; 74(4): 24622467. https://doi.org/10.1128/IAI.74.4.2462-2467.2006.

    • Search Google Scholar
    • Export Citation
  • 32.

    Yamazaki T, Miyamoto M, Yamada S, Okuda K, Ishihara K. Surface protease of Treponema denticola hydrolyzes C3 and influences function of polymorphonuclear leukocytes. Microbes Infect 2006; 8(7): 17581763. https://doi.org/10.1016/j.micinf.2006.02.013.

    • Search Google Scholar
    • Export Citation
  • 33.

    Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One 2012; 7(10): e47722.

    • Search Google Scholar
    • Export Citation
  • 34.

    Tanner ACR, Socransky SS, Goodson JM. Microbiota of periodontal pockets losing crestal alveolar bone. J Periodontal Res 1984; 19(3): 279291.

    • Search Google Scholar
    • Export Citation
  • 35.

    Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990; 10(5): 23272334.

    • Search Google Scholar
    • Export Citation
  • 36.

    Hajishengallis G, Martin M, Sojar HT, Sharma A, Schifferle RE, DeNardin E, et al. Dependence of bacterial protein adhesins on toll-like receptors for proinflammatory cytokine induction. Clin Dign Lab Immunol 2002; 9(2): 403411.

    • Search Google Scholar
    • Export Citation
  • 37.

    Onishi S, Honma K, Liang S, Stathopoulou P, Kinane D, Hajishengallis G, et al. Toll-like receptor 2-mediated interleukin-8 expression in gingival epithelial cells by the Tannerella forsythia leucine-rich repeat protein BspA. Infect Immun 2008; 76(1): 198205.

    • Search Google Scholar
    • Export Citation
  • 38.

    Lee HR, Jun HK, Choi BK. Tannerella forsythia BspA increases the risk factors for atherosclerosis in ApoE−/− mice. Oral diseases 2014; 20(8): 8038.

    • Search Google Scholar
    • Export Citation
  • 39.

    Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J 2013; 7(5): 10161025.

    • Search Google Scholar
    • Export Citation
  • 40.

    Hong BY, Furtado Araujo MV, Strausbaugh LD, Terzi E, Ioannidou E, Diaz PI. Microbiome profiles in periodontitis in relation to host and disease characteristics. PloS One 2015; 10(5): e0127077.

    • Search Google Scholar
    • Export Citation
  • 41.

    Signat B, Roques C, Poulet P, Duffaut D. Fusobacterium nucleatum in periodontal health and disease. Curr Issues Mol Biol 2011; 13(2): 2536.

    • Search Google Scholar
    • Export Citation
  • 42.

    Bradshaw DJ, Marsh PD, Watson GK, Allison C. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun 1998; 66(10): 47294732.

    • Search Google Scholar
    • Export Citation
  • 43.

    Fardini Y, Wang X, Témoin S, Nithianantham S, Lee D, Shoham M, et al. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol 2011; 82(6): 14681480. https://doi.org/10.1111/j.1365-2958.2011.07905.x.

    • Search Google Scholar
    • Export Citation
  • 44.

    Krisanaprakornkit S, Kimball JR, Weinberg A, Darveau RP, Bainbridge BW, Dale BA. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun 2000; 68(5): 29072915. https://doi.org/10.1128/IAI.68.5.2907-2915.2000.

    • Search Google Scholar
    • Export Citation
  • 45.

    Bhattacharyya S, Ghosh SK, Shokeen B, Eapan B, Lux R, Kiselar J, et al. FAD-I, a Fusobacterium nucleatum cell wall-associated diacylated lipoprotein that mediates human beta defensin 2 induction through Toll-like receptor-½ (TLR-½) and TLR-2/6. Infect Immun 2016; 84(5): 14461456.

    • Search Google Scholar
    • Export Citation
  • 46.

    Gainet J, Chollet-Martin S, Brion M, Hakim J, Gougerot-Pocidalo MA, Elbim C. Interleukin-8 production by polymorphonuclear neutrophils in patients with rapidly progressive periodontitis: an amplifying loop of polymorphonuclear neutrophil activation. Lab Invest 1998; 78(6): 755762.

    • Search Google Scholar
    • Export Citation
  • 47.

    Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 2015; 15(1): 3044. https://doi.org/10.1038/nri3785.

    • Search Google Scholar
    • Export Citation
  • 48.

    Valentine J, Saladyanant T, Ramsey K, Blake J, Morelli T, Southerland J, et al. Impact of periodontal intervention on local inflammation, periodontitis, and HIV outcomes. Oral Dis 2016; 22(Suppl 1): 8797. https://doi.org/10.1111/odi.12419.

    • Search Google Scholar
    • Export Citation
  • 49.

    Nussbaum G, Shapira L. How has neutrophil research improved our understanding of periodontal pathogenesis? J Clin Periodontol 2011; 38(Suppl 11): 4959. https://doi.org/10.1111/j.1600-051X.2010.01678.x.

    • Search Google Scholar
    • Export Citation
  • 50.

    Potempa M, Potempa J, Kantyka T, Nguyen KA, Wawrzonek K, Manandhar SP, et al. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. Plos Pathog 2009 Mar; 5(2): e1000316.

    • Search Google Scholar
    • Export Citation
  • 51.

    Popadiak K, Potempa J, Riesbeck K, Blom AM. Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J Immunol 2007; 178(11): 72427250.

    • Search Google Scholar
    • Export Citation
  • 52.

    Imamura T. The role of gingipains in the pathogenesis of periodontal disease. J Periodontol 2003; 74(1): 111118.

  • 53.

    Amano A, Furuta N, Tsuda K. Host membrane trafficking for conveyance of intracellular oral pathogens. Periodontol 2000 2010; 52(1): 8493.

    • Search Google Scholar
    • Export Citation
  • 54.

    Takeuchi H, Furuta N, Morisaki I, Amano A. Exit of intracellular Porphyromonas gingivalis from gingival epithelial cells is mediated by endocytic recycling pathway. Cell Microbiol 2011; 13(5): 677691.

    • Search Google Scholar
    • Export Citation
  • 55.

    Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW, et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 2014; 343(6167): 204208.

    • Search Google Scholar
    • Export Citation
  • 56.

    Pussinen PJ, Kopra E, Pietiäinen M, Lehto M, Zaric S, Paju S, et al. Periodontitis and cardiometabolic disorders: the role of lipopolysaccharide and endotoxemia. Periodontol 2000 2022; 89: 1940.

    • Search Google Scholar
    • Export Citation
  • 57.

    Sanz M, Ceriello A, Buysschaert M, Chapple I, Demmer RT, Graziani F, et al. Scientific evidence on the links between periodontal diseases and diabetes: consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. J Clin Periodontol 2018; 45(2): 138149.

    • Search Google Scholar
    • Export Citation
  • 58.

    Herrera D, Sanz M, Shapira L, Brotons C, Chapple I, Frese T, et al. Association between periodontal diseases and cardiovascular diseases, diabetes and respiratory diseases: Consensus report of the Joint Workshop by the European Federation of Periodontology (EFP) and the European arm of the World Organization of Family Doctors (WONCA Europe). J Clin Periodontol 2023; 50(6): 819841. https://doi.org/10.1111/jcpe.13807.

    • Search Google Scholar
    • Export Citation
  • 59.

    Taylor GW. Bidirectional interrelationships between diabetes and periodontal diseases: an epidemiologic perspective. Ann Periodontol. 2001; 6(1): 99112. https://doi.org/10.1902/annals.2001.6.1.99.

    • Search Google Scholar
    • Export Citation
  • 60.

    Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol 2018; 45(2): 150166.

    • Search Google Scholar
    • Export Citation
  • 61.

    Casarin RC, Barbagallo A, Meulman T, Santos VR, Sallum EA, Nociti FH, et al. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res 2013; 48(1): 306.

    • Search Google Scholar
    • Export Citation
  • 62.

    Mealey BL, Rethman MP. Periodontal disease and diabetes mellitus. Bidirectional relationship. Dent Today 2003; 22(4): 107113.

  • 63.

    Benguigui C, Bongard V, Ruidavets JB, Chamontin B, Sixou M, Ferrières J, et al. Metabolic syndrome, insulin resistance, and periodontitis: a cross-sectional study in a middle-aged French population. J Clin Periodontol 2010; 37(7): 601608.

    • Search Google Scholar
    • Export Citation
  • 64.

    Tian J, Liu C, Zheng X, Jia X, Peng X, Yang R, et al. Porphyromonas gingivalis induces insulin resistance by increasing BCAA levels in mice. J Dental Res 2020; 99(7): 839846. https://doi.org/10.1177/0022034520911037.

    • Search Google Scholar
    • Export Citation
  • 65.

    Ruiz HH, Ramasamy R, Schmidt AM. Advanced glycation end products: building on the concept of the “common soil” in metabolic disease. Endocrinology 2020; 161(1): 006.

    • Search Google Scholar
    • Export Citation
  • 66.

    Grossi SG, Genco RJ. Periodontal disease and diabetes mellitus: a two‐way relationship. Ann Periodontol 1998 Jul; 3(1): 5161.

  • 67.

    Chapple IL, Genco R, working group 2 of the joint EFP/AAP workshop. Diabetes and periodontal diseases: consensus report of the joint EFP/AAP workshop on periodontitis and systemic diseases. J Periodontol 2013; 84(4 Suppl): S106S112.

    • Search Google Scholar
    • Export Citation
  • 68.

    Costa PP, Trevisan GL, Macedo GO, Palioto DB, Souza SL, Grisi MF, et al. Salivary interleukin-6, matrix metalloproteinase-8, and osteoprotegerin in patients with periodontitis and diabetes. J Periodontol 2010; 81(3): 384391.

    • Search Google Scholar
    • Export Citation
  • 69.

    D’Aiuto F, Gkranias N, Bhowruth D, Khan T, Orlandi M, Suvan J, et al.. Systemic effects of periodontitis treatment in patients with type 2 diabetes: a 12 month, single-centre, investigator-masked, randomised trial. Lancet Diabetes Endocrinol 2018; 6(12): 954965.

    • Search Google Scholar
    • Export Citation
  • 70.

    Park JH, Kim SH, Kim SJ, Kim JW. Recovery from chronic periodontal disease is associated with lower risk for incident diabetes. J Clin Periodontol 2022; 49(9): 862871.

    • Search Google Scholar
    • Export Citation
  • 71.

    Allen EM, Matthews JB, O' Halloran DJ, Griffiths HR, Chapple IL. Oxidative and inflammatory status in Type 2 diabetes patients with periodontitis. J Clin Periodontol 2011; 38(10): 894901. https://doi.org/10.1111/j.1600-051X.2011.01764.x.

    • Search Google Scholar
    • Export Citation
  • 72.

    Engebretson S, Kocher T. Evidence that periodontal treatment improves diabetes outcomes: a systematic review and meta-analysis. J Clin Periodontol 2013; 40(Suppl 14): S153S163. https://doi.org/10.1111/jcpe.12084.

    • Search Google Scholar
    • Export Citation
  • 73.

    Babaev EA, Balmasova IP, Mkrtumyan AM, Kostryukova SN, Vakhitova ES, Il’ina EN, et al. Metagenomic analysis of gingival sulcus microbiota and pathogenesis of periodontitis associated with type 2 diabetes mellitus. Bull Exp Biol Med 2017; 163(6): 718721.

    • Search Google Scholar
    • Export Citation
  • 74.

    Shi B, Lux R, Klokkevold P, Chang M, Barnard E, Haake S, et al.. The subgingival microbiome associated with periodontitis in type 2 diabetes mellitus. ISME J 2020; 14(2): 519530. https://doi.org/10.1038/s41396-019-0544-3.

    • Search Google Scholar
    • Export Citation
  • 75.

    Mahalakshmi K, Krishnan P, Krishna Baba MG, Dhivyapriya V, Arumugam SB. “Association of periodontopathic anaerobic bacterial co-occurrence to atherosclerosis” – a cross-sectional study. Anaerobe 2017 Apr 1; 44: 6672.

    • Search Google Scholar
    • Export Citation
  • 76.

    Takahashi Y, Davey M, Yumoto H, Gibson FC III, Genco CA. Fimbria-dependent activation of pro-inflammatory molecules in Porphyromonas gingivalis infected human aortic endothelial cells. Cell Microbiol 2006; 8: 738757.

    • Search Google Scholar
    • Export Citation
  • 77.

    Giacona MB, Papapanou PN, Lamster IB, Rong LL, D’Agati VD, Schmidt AM, et al. Porphyromonas gingivalis induces its uptake by human macrophages and promotes foam cell formation in vitro. FEMS Microbiol Lett 2004; 241(1): 95101.

    • Search Google Scholar
    • Export Citation
  • 78.

    Tonetti MS, D’Aiuto F, Nibali L, Donald A, Storry C, Parkar M, et al. Treatment of periodontitis and endothelial function. N Engl J Med 2007; 356(9): 911920. https://doi.org/10.1056/NEJMoa063186.

    • Search Google Scholar
    • Export Citation
  • 79.

    Le Sage F, Meilhac O, Gonthier MP. Anti-inflammatory and antioxidant effects of polyphenols extracted from Antirhea borbonica medicinal plant on adipocytes exposed to Porphyromonas gingivalis and Escherichia coli lipopolysaccharides. Pharmacol Res 2017; 119: 303312. https://doi.org/10.1016/j.phrs.2017.02.020.

    • Search Google Scholar
    • Export Citation
  • 80.

    Lassenius M. Bacterial endotoxins in type 1 diabetes PhD thesis. Dissertations of the University of Helsinki; 29/2016. http://urn.fi/URN:ISBN:978-951-51-2104-.

    • Search Google Scholar
    • Export Citation
  • 81.

    Kumar KR, Ranganath V, Naik R, Banu S, Nichani AS. Assessment of high-sensitivity C-reactive protein and lipid levels in healthy adults and patients with coronary artery disease, with and without periodontitis--a cross-sectional study. J Periodontal Res 2014 Dec; 49(6): 83644. https://doi.org/10.1111/jre.12172.

    • Search Google Scholar
    • Export Citation
  • 82.

    Schenkein HA, Loos BG. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J Clin Periodontol 2013; Suppl 14(014): S51S69. https://doi.org/10.1111/jcpe.12060.

    • Search Google Scholar
    • Export Citation
  • 83.

    Chandy S, Joseph K, Sankaranarayanan A, Issac A, Babu G, Wilson B, et al. Evaluation of C-reactive protein and fibrinogen in patients with chronic and aggressive periodontitis: a clinico biochemical study. J Clin Diagn Res 2017; 11(3): ZC41-ZC45.

    • Search Google Scholar
    • Export Citation
  • 84.

    Vidal F, Cordovil I, Figueredo CM, Fischer RG. Non-surgical periodontal treatment reduces cardiovascular risk in refractory hypertensive patients: a pilot study. J Clin Periodontol 2013; 40(7): 681687.

    • Search Google Scholar
    • Export Citation
  • 85.

    Bokhari SA, Khan AA, Butt AK, Azhar M, Hanif M, Izhar M, et al. Non-surgical periodontal therapy reduces coronary heart disease risk markers: a randomized controlled trial. J Clin Periodontol 2012; 39(11): 10651074.

    • Search Google Scholar
    • Export Citation
  • 86.

    Perumal R, Rajendran M, Krishnamurthy M, Ganji KK, Pendor SD. Modulation of P-selection and platelet aggregation in chronic periodontitis: a clinical study. J Indian Soc Periodontol 2014; 18(3): 293300.

    • Search Google Scholar
    • Export Citation
  • 87.

    Ford PJ, Gemmell E, Hamlet SM, Hasan A, Walker PJ, West MJ, et al. Cross-reactivity of GroEL antibodies with human heat shock protein 60 and quantification of pathogens in atherosclerosis. Oral Microbiol Immunol 2005; 20: 296302.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 0 0 0
Nov 2024 0 0 0
Dec 2024 0 0 0
Jan 2025 0 0 0
Feb 2025 0 0 0
Mar 2025 437 3 3
Apr 2025 0 0 0