View More View Less
  • 1 Department of Corporate Finance, School of Business Administration, Corvinus University of Budapest Fővám tér 8, E-350, H-1093 Budapest, Hungary
  • 2 Futures Studies Department, Corvinus University of Budapest. Budapest, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $700.00

The article attempts to answer the question whether or not the latest bankruptcy prediction techniques are more reliable than traditional mathematical-statistical ones in Hungary. Simulation experiments carried out on the database of the first Hungarian bankruptcy prediction model clearly prove that bankruptcy models built using artificial neural networks have higher classification accuracy than models created in the 1990s based on discriminant analysis and logistic regression analysis. The article presents the main results, analyses the reasons for the differences and presents constructive proposals concerning the further development of Hungarian bankruptcy prediction.

  • Benedek, G. (2000): Evolúciós alkalmazÁsok előrejelzési modellekben - I. (Evolution Applications in Prediction Models - I). KözgazdasÁgi Szemle, 47(December): 988-1007.

    'Evolúciós alkalmazÁsok előrejelzési modellekben - I. (Evolution Applications in Prediction Models - I). ' () 47 KözgazdasÁgi Szemle : 988 -1007.

    • Search Google Scholar
  • Benedek, G. (2003): Evolúciós gazdasÁgok szimulÁciója. PhD értekezés (Simulation of Evolutionary Economies. Ph.D. Thesis). Budapest: Department of Econometrics and Mathematical Economics, BUESPA.

  • Bernhardsen, E. (2001): A Model of Bankruptcy Prediction. Working Paper. Oslo: Financial Analysis and Structure Department - Research Department, Norges Bank.

    A Model of Bankruptcy Prediction. , ().

  • Alici, Y. (1995): Neural Networks in Corporate Failure Prediction: The UK Experience. In: Refenes, A. N. - Abu-Mostafa, Y. - Moody, J. - Weigend, A. (eds): Processing Third International Conference of Neural Networks in the Capital Markets, London, October: 393-406.

    , , .

  • Altman, E. I., Haldeman, R., Narayanan, P. (1977): ZETA Analysis, a New Model for Bankruptcy Classification. Journal of Banking and Finance, 1(1): 29-54.

    'ZETA Analysis, a New Model for Bankruptcy Classification. ' () 1 Journal of Banking and Finance : 29 -54.

    • Search Google Scholar
  • Bigus, J. P. (1996): Data Mining with Neural Networks: Solving Business Problems. New York: McGraw-Hill.

    Data Mining with Neural Networks: Solving Business Problems. , ().

  • Coats, P., Fant, L. (1993): Recognizing Financial Distress Patterns Using a Neural Network Tool. Financial Management, 22(3): 42-155.

    'Recognizing Financial Distress Patterns Using a Neural Network Tool. ' () 22 Financial Management : 42 -155.

    • Search Google Scholar
  • Altman, E. I., Marco, G., Varetto, F. (1994): Corporate Distress Diagnosis: Comparisons Using Linear Discriminant Analysis and Neural Networks. Journal of Banking and Finance, (18)3: 505-529.

    'Corporate Distress Diagnosis: Comparisons Using Linear Discriminant Analysis and Neural Networks ' () 3 Journal of Banking and Finance : 505 -529.

    • Search Google Scholar
  • Atiya, A. F. (2001): Bankruptcy Prediction for Credit Risk Using Neural Networks: A Survey and New Results. IEEE Transactions on Neural Networks, 12(4): 929-935.

    'Bankruptcy Prediction for Credit Risk Using Neural Networks: A Survey and New Results. ' () 12 IEEE Transactions on Neural Networks : 929 -935.

    • Search Google Scholar
  • Back, B., Laitinen, T., Sere, K., van Wezel, M. (1996): Choosing Bankruptcy Predictors Using Discriminant Analysis, Logit Analysis, and Genetic Algorithms. Technical Report, No. 40. Turku: Turku Centre for Computer Science.

    Choosing Bankruptcy Predictors Using Discriminant Analysis, Logit Analysis, and Genetic Algorithms. , ().

    • Search Google Scholar
  • Beaver, W. (1966): Financial Ratios as Predictors of Failure. Empirical Research in Accounting: Selected Studies. Journal of Accounting Research, Supplement to Vol. 5: 71-111.

    'Financial Ratios as Predictors of Failure. Empirical Research in Accounting: Selected Studies ' () 5 Journal of Accounting Research : 71 -111.

    • Search Google Scholar
  • Cybenko, G. (1989): Approximation by Superpositions of a Sigmoid Function. Mathematics of Controls, Signals and Systems, 2(4): 303-314.

    'Approximation by Superpositions of a Sigmoid Function. ' () 2 Mathematics of Controls, Signals and Systems : 303 -314.

    • Search Google Scholar
  • Fitzpatrick, P. (1932): A Comparison of the Ratios of Successful Industrial Enterprises with Those of Failed Companies. Washington: The Accountants' Publishing Company.

    A Comparison of the Ratios of Successful Industrial Enterprises with Those of Failed Companies. , ().

    • Search Google Scholar
  • Frydman, H., Altman, E. I., Kao, D. L. (1985): Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress. The Journal of Finance, 40(1): 303-320.

    'Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress. ' () 40 The Journal of Finance : 303 -320.

    • Search Google Scholar
  • Gonzalez, S. (2000): Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models. Working Paper 2000-07, Department of Finance, Canada.

    Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models. , ().

    • Search Google Scholar
  • Hajdu, O., VirÁg, M. (2001): A Hungarian Model for Predicting Financial Bankruptcy. Society and Economy in Central and Eastern Europe, 23(1-2): 28-46.

    'A Hungarian Model for Predicting Financial Bankruptcy. ' () 23 Society and Economy in Central and Eastern Europe : 28 -46.

    • Search Google Scholar
  • Füstös, L., KovÁcs, E., Meszéna, Gy., Simonné Mosolygó, N. (2004): Alakfelismerés. SokvÁltozós statisztikai módszerek (Pattern Recognition. Multivariante Statistical Methods). Budapest: új MandÁtum Kiadó.

    Alakfelismerés. SokvÁltozós statisztikai módszerek (Pattern Recognition. Multivariante Statistical Methods) , ().

    • Search Google Scholar
  • Kerling, M., Poddig, T. (1994): Klassifikation von Unternehmen mittels KNN. In: Rehkugler, H. - Zimmermann, H. G. (eds), Neuronale Netze in der ökonomie. München: Vahlen Verlag, 424-490.

    Klassifikation von Unternehmen mittels KNN , () 424 -490.

  • Kiviluoto, K. (1998): Predicting Bankruptcies with the Self-organizing Map. Neurocomputing, 21(1-3): 191-201.

    'Predicting Bankruptcies with the Self-organizing Map. ' () 21 Neurocomputing : 191 -201.

  • Kristóf, T. (2002): A mesterséges neurÁlis hÁlók a jövőkutatÁs szolgÁlatÁban (Artificial Neural Networks Serving Futures Studies). JövőtanulmÁyok 9. Budapest: Futures Studies Centre, BUESPA.

    A mesterséges neurÁlis hÁlók a jövőkutatÁs szolgÁlatÁban (Artificial Neural Networks Serving Futures Studies) , ().

    • Search Google Scholar
  • Kristóf, T. (2004): Mesterséges intelligencia a csődelőrejelzésben (Artificial Intelligence in Bankruptcy Prediction). JövőtanulmÁnyok 21. Budapest: Futures Studies Centre, BUESPA.

    Mesterséges intelligencia a csődelőrejelzésben (Artificial Intelligence in Bankruptcy Prediction) , ().

    • Search Google Scholar
  • Leshno, M., Spector, Y. (1996): Neural Network Prediction Analysis: The Bankruptcy Case. Neurocomputing, 10(1): 125-147.

    'Neural Network Prediction Analysis: The Bankruptcy Case. ' () 10 Neurocomputing : 125 -147.

    • Search Google Scholar
  • McKee, T. E., Greenstein, M. (2000): Predicting Bankruptcy Using Recursive Partitioning and a Realistically Proportioned Data Set. Journal of Forecasting, 19(3): 219-230.

    'Predicting Bankruptcy Using Recursive Partitioning and a Realistically Proportioned Data Set. ' () 19 Journal of Forecasting : 219 -230.

    • Search Google Scholar
  • Ohlson, J. (1980): Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1): 109-131.

    'Financial Ratios and the Probabilistic Prediction of Bankruptcy. ' () 18 Journal of Accounting Research : 109 -131.

    • Search Google Scholar
  • Shachmurove, Y. (2002): Applying Artificial Neural Networks to Business, Economics and Finance. New York: Departments of Economics, The City College of the City University of New York and The University of Pennsylvania.

    Applying Artificial Neural Networks to Business, Economics and Finance. , ().

  • Neophytou, E., Charitou, A., Charalambous, C. (2000): Predicting Corporate Failure: Empirical Evidence for the UK. Southampton: Department of Accounting and Management Science, University of Southampton.

    Predicting Corporate Failure: Empirical Evidence for the UK. , ().

  • NovÁky, E. (2001): Methodological Renewal in Futures Studies. In: Stevenson, T. - Masini, E. B. - Rubin, A. - Lehmann-Chada, M. (eds): The Quest for the Futures: A Methodology Seminar in Futures Studies. Turku: Finland Futures Research Centre, 187-199.

    'Methodological Renewal in Futures Studies ' , , .

  • Shlens, J. (1999): Time Series Prediction with Artificial Neural Networks. Los Angeles: Computer Science Program, Swarthmore College.

    Time Series Prediction with Artificial Neural Networks. , ().

  • Stergiou, C., Siganos, D. (1996): Neural Networks. London: Computer Department, Imperial College of London. http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol14/cs11

  • Tam, K., Kiang, M. (1992): Managerial Applications of the Neural Networks: The Case of Bank Failure Predictions. Management Science, 38(7): 416-430.

    'Managerial Applications of the Neural Networks: The Case of Bank Failure Predictions. ' () 38 Management Science : 416 -430.

    • Search Google Scholar
  • Odom, M. D., Sharda, R. (1990): A Neural Network Model For Bankruptcy Prediction. In: Proceeding of the International Joint Conference on Neural Networks, San Diego, 17-21 June 1990, Volume II. IEEE Neural Networks Council, Ann Arbor, 163-171.

    'A Neural Network Model For Bankruptcy Prediction ' , , .

  • Olmeda, I., Fernandez, E. (1997): Hybrid Classifiers for Financial Multicriteria Decision Making: The Case of Bankruptcy Prediction. Computational Economics, 10(4): 317-352.

    'Hybrid Classifiers for Financial Multicriteria Decision Making: The Case of Bankruptcy Prediction. ' () 10 Computational Economics : 317 -352.

    • Search Google Scholar
  • Ooghe, H., Claus, H., Sierens, N., Camerlynck, J. (1999): International Comparison of Failure Prediction Models from Different Countries: An Empirical Analysis. Ghent: Department of Corporate Finance, University of Ghent.

    International Comparison of Failure Prediction Models from Different Countries: An Empirical Analysis. , ().

    • Search Google Scholar
  • Tan, C. N. W. (1999): An Artificial Neural Networks Primer with Financial Applications Examples in Financial Distress Predictions and Foreign Exchange Hybrid Trading System. Australia: School of Information Technology, Bond University.

    An Artificial Neural Networks Primer with Financial Applications Examples in Financial Distress Predictions and Foreign Exchange Hybrid Trading System. , ().

    • Search Google Scholar
  • VirÁg, M. (1996): Pénzügyi elemzés, csődelőrejelzés (Financial Analysis, Bankruptcy Prediction). Budapest: Kossuth Kiadó.

    Pénzügyi elemzés, csődelőrejelzés (Financial Analysis, Bankruptcy Prediction) , ().

    • Search Google Scholar
  • VirÁg, M., Hajdu, O. (1996): Pénzügyi mutatószÁmokon alapuló csődmodell-szÁmítÁsok (Financial Ratio Based Bankruptcy Model Calculations). Bankszemle, 15(5): 42-53.

    'Pénzügyi mutatószÁmokon alapuló csődmodell-szÁmítÁsok (Financial Ratio Based Bankruptcy Model Calculations). ' () 15 Bankszemle : 42 -53.

    • Search Google Scholar
  • Werbos, P. (1974): Beyond Regression: New Tools for Prediction and Analysis in the Behavioural Sciences. Ph.D Thesis. Cambridge MA: Harvard University.

  • Yang, Z. (2001): A New Method for Company Failure Prediction Using Probabilistic Neural Networks. Exeter: Department of Computer Science, Exeter University.

    A New Method for Company Failure Prediction Using Probabilistic Neural Networks. , ().

    • Search Google Scholar
  • Zmijewski, M. E. (1984): Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, Supplement to Vol. 22: 59-82.

    Methodological Issues Related to the Estimation of Financial Distress Prediction Models , () 59 -82.

    • Search Google Scholar
  • Yim, J., Mitchell, H. (2005): A Comparison of Corporate Distress Prediction Models in Brazil: Hybrid Neural Networks, Logit Models and Discriminant Analysis. Nova Economia Belo Horizonte, 15(1): 73-93.

    'A Comparison of Corporate Distress Prediction Models in Brazil: Hybrid Neural Networks, Logit Models and Discriminant Analysis. ' () 15 Nova Economia Belo Horizonte : 73 -93.

    • Search Google Scholar
  • Zhang, G., Hu, M., Patuwo, B. (1999): Artificial Neural Networks in Bankruptcy Prediction: General Framework and Cross-validation Analysis. European Journal of Operational Research 116: 16-32.

    'Artificial Neural Networks in Bankruptcy Prediction: General Framework and Cross-validation Analysis. ' () 116 European Journal of Operational Research : 16 -32.

    • Search Google Scholar
  • Piramuthu, S., Raghavan, H., Shaw, M. (1998): Using Feature Construction to Improve the Performance of Neural Networks. Management Science, 44(2): 416-430.

    'Using Feature Construction to Improve the Performance of Neural Networks. ' () 44 Management Science : 416 -430.

    • Search Google Scholar
  • Platt, H. D., Platt, M. B. (1990): Development of a Class of Stable Predictive Variants: The Case of Bankruptcy Prediction. Journal of Business Finance and Accounting, 17(1): 31-44.

    'Development of a Class of Stable Predictive Variants: The Case of Bankruptcy Prediction. ' () 17 Journal of Business Finance and Accounting : 31 -44.

    • Search Google Scholar
  • Salchenberger, L., Cinar, E., Lash, N. (1992): Neural Networks: A New Tool for Predicting Thrift Failures. Decision Sciences, 23(4): 899-916.

    'Neural Networks: A New Tool for Predicting Thrift Failures. ' () 23 Decision Sciences : 899 -916.

    • Search Google Scholar
  • Act XLIX. of 1991 (1991): Act XLIX of 1991 on Bankruptcy Procedure, on Liquidation Procedure and on Final Settlement.

  • Altman, E. I. (1968): Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bank-ruptcy. The Journal of Finance, 23(4): 589-609.

    'Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bank-ruptcy. ' () 23 The Journal of Finance : 589 -609.

    • Search Google Scholar