This study presents the detailed methodology of generating house price indices for the Hungarian market. The index family is an expansion of the Hungarian housing market statistics in several regards. The nationwide index is derived from a database starting from 1990, and thus the national index is regarded as the longest in comparison to the house price indices available so far. The long time series allow us to observe and compare the real levels of house prices across economic cycles. Another important innovation of this index family is its ability to capture house developments by regions and settlement types, which sheds light on the strong regional heterogeneity underlying the Hungarian housing market.
Bailey, M. J. – Muth, R. F. – Nourse, H. O. (1963): A Regression Method for Real Estate Price Construction. Journal of the American Statistical Association, 58: 933–942.
Banai, Á. – Vágó, N. – Winkler, S. (2017): The MNB’s House Price Index Methodology. MNB Occasional Papers, No. 127.
Belsley, D. A. – Kuh, E. – Welsch, R. E. (1980): Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Bollen, K. A. – Jackman, R. W. (1990): Regression Diagnostics: An Expository Treatment of Outliers and Influential Cases. In: Fox, J. – Long, J. S. (eds): Modern Methods of Data Analysis. Newbury Park, CA: Sage, pp. 539–558.
Chatterjee, S. – Hadi, A. S. (1986): Influential Observations, High Leverage Points, and Outliers in Linear Regression. Statistical Science, 1(3): 379–393.
Cook, R. D. (1977): Detection of Influential Observation in Linear Regression. Technometrics, 19(1): 15–18.
Court, A. T. (1939): Hedonic Price Indexes with Automotive Examples. In: The Dynamics of Automobile Demand. New York: General Motors Corporation, pp. 539–558.
Crone, T. M. – Voith, R. P. (1992): Estimating House Price Appreciation: A Comparison of Methods. Journal of Housing Economics, 2(4): 324–338.
European Central Bank (2011): Financial Stability Review, June 2011.
European Central Bank (2015): Financial Stability Review, November 2015.
Eurostat (2013): Handbook on Residential Property Price Indices (RPPIs).
Gatzlaff, D. H. – Ling, D. (1994): Measuring Changes in Local House Prices: An Empirical Investigation of Alternative Methodologies. Journal of Urban Economics, 35(2): 221–244.
Griliches, Z. (1961): Hedonic Price Indexes for Automobiles: An Econometric Analysis for Quality Change. In: Price Statistics Review Committee (ed.): The Price Statistics of the Federal Government. National Bureau of Economic Research, Inc., pp. 539–558.
Hair, J. F. – Anderson, R. E. – Tatham, R. L. – Black, W. C. (1995): Multivariate Data Analysis. Prentice-Hall.
Horváth, Á. (2007): Ingatlanárindexek számításának módszertana (On the Methodology of Real Estate Price Indexes). Statisztikai Szemle, 85(3): 213–239.
Horváth, Á. – Székely, G. (2009): Hedonikus módszer alkalmazása a használt lakások áralakulásának megfigyelésében (Applying Hedonic Methods in Observing Price Trends of Second-Hand Properties), Statisztikai Szemle, 87(6): 594–607.
Knight, J. R. – Dombrow, J. – Sirmans, C. F. (1995): A Varying Parameters Approach to Constructing House Price Indexes. Real Estate Economics, 23(2): 187–205.
Kutasi, D. – Badics, M. Cs. (2016): Comparison of the Hedonic Regression and the Neural Network Valuation Methods: Evidence from the Budapest Housing Market. Acta Oeconomica, 66(3): 527–546.
Lancaster, K. J. (1966): A New Approach to Consumer Theory. Journal of Political Economy, 74(2): 132–157.
O’Brien, D. – Westermann, T. – Vidalis, N. (2014): Review of the ECB’s House Price Valuations Framework. ECB, Directorate General Economics, Prices and Costs Division.
Oikarinen, E. (2012): Empirical Evidence on the Reaction Speeds of Housing Prices and Sales to Demand Shocks. Journal of Housing Economics, 21(1): 41–54.
Rosen, S. (1974): Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. Journal of Political Economy, 82(1): 34–55.
Standard & Poor’s (2009): S&P Case-Shiller Home Price Indices Index Methodology. New York.
Vellemen, P. F. – Welsch, R. E. (1981): Efficient Computing of Regression Diagnostics. The American Statistician, 35: 234–242.
Welsch, R. E. (1982): Influence Functions and Regression Diagnostics. In: Launer, R. L. – Siegel, A. F. (eds): Modern Data Analysis. New York: Academic Press, pp. 539–558.
Zrínyi, M. – Katona, É. – Szántó, I. – Páll, D. (2012): A lineáris regressziót befolyásoló esetek diagnosztikája (Diagnostics of Cases Influencing Linear Regressions). Statisztikai Szemle, 90(7-8): 719–732.