View More View Less
  • 1 Department of Economic and Social Statistics, Faculty of Economics and Sociology, University of Lodz, Poland
  • 2 Department of Statistical Methods, University of Lodz, Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $700.00

The paper concentrates on the evaluation of the Global Innovation Index, the Summary Innovation Index and the Innovation Output Indicator. For the purpose of this article, the PROFIT (PROperty- FITting) method, an extension of the multidimensional scaling (MDS), was applied. The ultimate goal of MDS techniques is to produce a geometric map that illustrates the underlying structure of complex phenomena such as the innovation performance of the EU countries. Cluster analysis, conducted with the use of Ward’s method provided an objective view of the division of the EU countries based on their selected characteristics. The final result is a two-dimensional map illustrating the structure of innovation performance. The main conclusion drawn from the analysis is the explanation of distance between single indices in a spatial map and their role in distinguishing specific groups of the EU countries from the perspective of innovation performance.

  • Aiginger, K. (2004): Industrial Specialisation and Geographic Concentration: Two Sides of the Same Coin? Journal of Applied Economics, VII(2): 231248.

    • Search Google Scholar
    • Export Citation
  • Beardsworth, A.Keil, T. (1992): The Vegetarian Option: Varieties, Conversions, Motives and Careers. Sociological Review, 40(2): 253293.

    • Search Google Scholar
    • Export Citation
  • Black, J. K. (1991): Development in Theory and Practice: Bridging the Gap. Boulder, Colorodo: Westview.

  • Borg, I.Groenen, P. (2005): Modern Multidimensional Scaling. Theory and Applications. Second Edition, New York: Springer Verlag.

  • Cox, T. F.Cox, M. A. A. (1991): Multidimensional Scaling. London: Chapman and Hall.

  • de Amorim, R. C. (2015): Feature Relevance in Ward’s Hierarchical Clustering Using the Lp Norm. Journal of Classification, 32(1): 4662.

    • Search Google Scholar
    • Export Citation
  • Diamantopoulos, A.Siguaw, J. A. (2006): Formative vs. Reflective Indicators in Measure Development: Does the Choice of Indicators Matter? British Journal of Management, 17(4): 263282.

    • Search Google Scholar
    • Export Citation
  • Diamantopoulos, A.Winklhofer, H. M. (2001): Index Construction with Formative Indicators: An Alternative to Scale Development. Journal of Marketing Research, 38(2): 269277.

    • Search Google Scholar
    • Export Citation
  • Dutta, S.Lanvin, B.Wunsch-Vincent, S. (eds) (2015): The Global Innovation Index 2015. Effective Innovation Policies for Development. Fontainebleau, Ithaca, and Geneva: Cornell University, INSEAD, World Intellectual Property Organization (WIPO). European Commission (2013): Commission Launches New Innovation Indicator. Brussels.

    • Search Google Scholar
    • Export Citation
  • European Commission (2015): Innovation Union Scoreboard 2015. Belgium: Internal Market Industry, Entrepreneurship and SMEs, 2015. http://bookshop.europa.eu/en/innovation-unionscoreboard-2015-pbNBAY15001/.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, R. E.Foxall, G. R. (2003): The Measurement of Innovativeness. Prague: MAC Prague Consulting Ltd.

  • Gower, J. C.Hand, D. J. (1996): Biplots. London: Chapman & Hall.

  • Hollanders, H.Van Cruysen, A. (2008): Rethinking the European Innovation Scoreboard: A New Methodology for 2008-2010. Geneva: Pro INNO Europe.

    • Search Google Scholar
    • Export Citation
  • Kaufman, L.Rousseeuw, P. J. (1990): Finding Groups in Data: An Introduction to Cluster Analysis. New York: John&Wiley.

  • Kruskal, J. B. (1964): Nonmetric Multidimensional Scaling: A Numerical Method. Psychometria, 29: 127.

  • Kruskal, J. B.Wish, M. (1978): Multidimensional Scaling. California: Sage.

  • Krzanowski, W. J. (1988): Principles of Multivariate Analysis: A User’s Perspective. Oxford: Oxford University Press.

  • Maggino, F. (2009): The State of the Art in Indicators Construction in the Perspective of a Comprehensive Approach in Measuring Well-Being of Societies. Firenze: Firenze University Press.

    • Search Google Scholar
    • Export Citation
  • Majerová, I. (2015): Measurement of Innovative Performance of Selected Economies of the European Union and Switzerland. International Journal of Information and Education Technology, 5(3): 228232.

    • Search Google Scholar
    • Export Citation
  • Lieske, J. (1993): Regional Subcultures of the United States. Journal of Politics, 55: 888913.

  • Murtagh, F. (2014): Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification, 31: 274295.

  • Panek, T. (2015): Hierarchiczny model pomiaru jakości życia (The Hierarchical Model of Life Quality Measures). Wiadomości Statystyczne, 6(649): 122.

    • Search Google Scholar
    • Export Citation
  • Rogowski, J. (1990): Modele miękkie. Teoria i zastosowanie w badaniach ekonomicznych (Soft Models. Theory and Application in Economic Research). Białystok: Wydawnictwo Filii UW w Białymstoku.

    • Search Google Scholar
    • Export Citation
  • Rokach, L.Maimon, O. (2005): Clustering Methods. In: Rokach, L.Maimon, O. (eds): Data Mining and Knowledge Discovery Handbook. US: Springer, pp. 321352.

    • Search Google Scholar
    • Export Citation
  • Rossiter, J. R. (2002): The C-OAR-SE Procedure for Scale Development in Marketing. International Journal of Research in Marketing, 19(4): 305335

    • Search Google Scholar
    • Export Citation
  • Roszko-Wójtowicz, E.Białek, J. (2017a): Application of Grouping Methods to Assess Growth and Development in the EU Member States. Acta Universitatis Lodziensis. Folia Oeconomica, 3(329): 193211.

    • Search Google Scholar
    • Export Citation
  • Roszko-Wójtowicz, E.Białek, J. (2017b): Evaluation of the EU Countries Innovative Potential – Multivariate Approach. Statistics in Transition – New series, 18(1): 167180.

    • Search Google Scholar
    • Export Citation
  • Sagan, A. (2011): Modele strukturalne w analizie zachowań konsumenta – ewolucja podejść (Structural Models in the Consumer Behaviour Analysis. Evolution of Approaches). Konsumpcja i rozwój, 1: 6776.

    • Search Google Scholar
    • Export Citation
  • Sagan, A. (2013): Paradygmaty marketingu a modelowanie zmiennych ukrytych – porównanie modeli pomiarowych skali WSAW (Marketing Paradigms and Latent Variable Modelling – Comparison of Measurement Models of WSAW Scale). Zeszyty Naukowe UEK – Metody analizy danych, 909: 515.

    • Search Google Scholar
    • Export Citation
  • Smarandache, F.Savoiu, G. (2015): Neutrosophic Index Numbers: Neutrosophic Logic Applied in the Statistical Indicators Theory. Critical Review, XI: 67100.

    • Search Google Scholar
    • Export Citation
  • Statistics and Science (2013): A Report of the London Workshop on the Future of Statistical Sciences.

  • Takane, Y.Young, F. – de Leeuw, J. (1977): Non-Metric Individual Differences Multidimensional Scaling: An Alternating Least Squares Method with Optimal Scaling Features. Psychometrika, 42(1): 767.

    • Search Google Scholar
    • Export Citation
  • Vertesy, D.Deiss, R. (2016): The Innovation Output Indicator 2016. Methodology Update. Brussels: European Commission.

  • Von Schutz, U.Stierle, M. (2003): Regional Specialisation and Sectoral Concentration: An Empirical Analysis for the Enlarged EU. Document of European Regional Science Association.

    • Search Google Scholar
    • Export Citation
  • Wish, M.Deutsch, M.Biener, L. (1970): Differences in Conceptual Structures of Nations: An Exploratory Study. Journal of Personality & Social Psychology, 16(3): 361373.

    • Search Google Scholar
    • Export Citation
  • Young, F. W.Hamer, R. M. (1987): Multidimensional Scaling: History, Theory and Application. New Jersey: Lawrence Eribaum Associates.

    • Search Google Scholar
    • Export Citation
  • Zaborski, A.Pełka, M. (2013): Geometrical Presentation of Preferences by Using Profit Analysis and R Program. Folia Oeconomia, Acta Universitatis Lodziensis, 285: 191197.

    • Search Google Scholar
    • Export Citation