Authors:
Ana Krstić University of Kragujevac, Faculty of Economics, Serbia

Search for other papers by Ana Krstić in
Current site
Google Scholar
PubMed
Close
,
Milena Jaksić University of Kragujevac, Faculty of Economics, Serbia

Search for other papers by Milena Jaksić in
Current site
Google Scholar
PubMed
Close
,
Predrag Mimović University of Kragujevac, Faculty of Economics, Serbia

Search for other papers by Predrag Mimović in
Current site
Google Scholar
PubMed
Close
, and
Danijela Tadić University of Kragujevac, Faculty of Engineering, Serbia

Search for other papers by Danijela Tadić in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The paper presents the application of a non-parametric data envelopment analysis (DEA) technique for measuring the macroeconomic performance of the Balkan countries. In this context, for the period of 2006–2018, a dynamic DEA Window model was applied based on selected macroeconomic indicators as input and output variables. For a more comprehensive and objective analysis, the DEA Window analysis is complemented by a Malmquist productivity index that provides a more complete picture of the observed entities' performance and shows a trend of change from period to period. The results showed that in the observed period, Albania and to a large extent Montenegro, especially after the end of the global financial crisis, had the highest average efficiency, that is, they used the available resources effectively to increase the GDP growth rates. The EU Member States, Greece and Croatia, in particular, achieved the highest growth in overall productivity over the observed period, and this growth was largely due to a change in technical efficiency.

  • Asmild, M. Paradi, J. C. Aggarwall, V. Schaffnit, C. (2004): Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry. Journal of Productivity Analysis, 21(1): 6789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnes, A. Cooper, W. W. Rhodes, E. (1978): Measuring the Efficiency of DMUs. European Journal of Operational Research, 2(6): 429444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnes, A. Cooper, W. Lewin, A. Seiford, L. (1994): Data Envelopment Analysis: Theory, Methodology, and Application .Kluwer Academic Publishers.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C. M. (2009): A Network-DEA Model with New Efficiency Measures to Incorporate the Dynamic Effect in Production Networks. European Journal of Operational Research, 194(3): 687699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C. M. van Dalen, J. (2010): Measuring Dynamic Efficiency: Theories and an Integrated Methodology. European Journal of Operational Research, 203(3): 749760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelli, T. J. Rao, D. S. P. O'Donnel, C. J. Battese, G. E. (2005): An Introduction to Efficiency and Productivity Analysis . (2nd ed.) Berlin: Springer.

    • Search Google Scholar
    • Export Citation
  • Cook, W. D. Liang, L. Zha, Y. Zhu, J. (2009): A Modified Super-Efficiency DEA Model for Infeasibility. Journal of the Operational Research Society, 60(2): 276281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, W. D. Tone, K. Zhu, J. (2014): Data Envelopment Analysis: Prior to Choosing a Model. Omega, 44: 14.

  • Cooper, W. Seiford, L. Tone, K. (2007): Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software .Berlin: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. Seiford, L. Zhu, J. (2011): Handbook on Data Envelopment Analysis. New York: Springer Science & Business Media.

  • Ćorović, E. Gligorijević, Ž. (2021): Competitiveness in the Serbian Growth Model. Acta Oeconomica, 2(71): 309326.

  • Cullinane, K. Song, D. W. Wang, T. F. (2004): An Application of DEA Windows Analysis to Container Port Production Efficiency. Review of Network Economy, 3(2): 184206.

    • Search Google Scholar
    • Export Citation
  • Debreu, G. (1951): The Coefficient of Resource Utilization. Econometrica, 19(3): 273292.

  • Diewert, W. Caves, D. Christensen, L. (1982): The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity. Econometrica, 50(6): 13931414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyson, R. G. Allen, R. Camanho, A. S. Podinovski, V. V. Sarrico, C. S. Shale, E. A. (2001): Pitfalls and Protocols in DEA. European Journal of Operational Research, 132(2): 245259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edirisinghe, N. C. P. Zhang, X. (2007): Generalized DEA Model of Fundamental Analysis and its Application to Portfolio Optimization. Journal of Banking and Finance, 31(11): 33113335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escaith, H. (2006): Can Latin America Fly? Revising its Engines of Growth .Serie Estudios Estadísticos y Prospectivos, No. 45, United Nations Economic Commission for Latin America and the Caribbean, Santiago, Chile.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forstner, H. Isaksson, A. (2002): Productivity, Technology and Efficiency: An Analysis of the World Technology Frontier when Memory is Infinite. SIN Working Paper, No. 7, Statistics and Information Networks Branch of UNIDO.

    • Search Google Scholar
    • Export Citation
  • Gligorić, M. Jovanović Gavrilović, B. Stanišić, N. (2020): GDP and Beyond: Prosperity Convergence in the Countries of Western and Eastern Europe. Acta Oeconomica, 4(70): 493511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, H. Yue, J. (2011): The Relationship between Bank Efficiency and Stock Returns: Evidence from Chinese Listed Banks. World Journal of Social Sciences, 1(4): 95106.

    • Search Google Scholar
    • Export Citation
  • Imanirad, R. Cook, W. D. Aviles-Sacoto, S. V. Zhu, J. (2015): Partial Input to Output Impacts in DEA: The Case of DMU-Specific Impacts. European Journal of Operational Research, 244(3): 837844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, L. Anderson, M. (2003): A Multivariate Statistical Approach to Reducing the Number of Variables in Data Envelopment Analysis. European Journal of Operational Research, 147(1): 5161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, T. Yuan, H. (2017): The Application of DEA (Data Envelopment Analysis) Window Analysis in the Assessment of Influence on Operational Efficiencies after the Establishment of Branched Hospitals. BMC Health Services Research, 17: 28.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerekes, M. (2007): Analyzing Patterns of Economic Growth: A Production Frontier Approach. Working Paper, No. 15, Freie Universität, Berlin.

    • Search Google Scholar
    • Export Citation
  • Kutlar, A. Kabasakal, A. Babacan, A. (2015): Dynamic Efficiency of Turkish Banks: A DEA Window and Malmquist Index Analysis for Period of 2003–2012. Sosyoekonomi, 23(24): 7197.

    • Search Google Scholar
    • Export Citation
  • Lábaj, M. Luptáčik, M. Nežinský, E. (2013): Data Envelopment Analysis for Measuring of Economic Growth in Terms of Welfare Beyond GDP. Working Paper Series, No. 2. Department of Economic Policy University of Economics in Bratislava, Department of Economic Policy.

    • Search Google Scholar
    • Export Citation
  • Liu, F. Wang, P. (2008): DEA Malmquist Productivity Measure: Taiwanese Semiconductor Companies. International Journal of Production Economics, 112(1): 367379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovell, C. K. (1990): Measuring the Macroeconomic Performance of the Taiwanese Economy. International Journal of Production Economics, 39(1–2): 129.

    • Search Google Scholar
    • Export Citation
  • Lovell, C. K. Pastor, J. T. Turner, J. A. (1995): Measuring Macroeconomic Performance in the OECD: A Comparison of European and Non-European Countries. European Journal of Operational Research, 87(3): 507518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malmquist, S. (1953): Index Numbers and Indifference Surfaces. Trabajos de Estadistica, 4: 209242.

  • Martic, M. Savic, G. (2001). An Application of DEA for Comparative Analysis and Ranking of Regions in Serbia with Regards to Social-Economic Development. European Journal of Operational Research, 132(2): 343356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milner, C. Weyman-Jones, T. (2003): Relative National Efficiency and Country Size: Evidence for Developing Countries. Review of Development Economics, 7(1): 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OECD (2001): Measuring Productivity, Measurement of Aggregate and Industry-Level Productivity Growth. OECD Manual.

  • Poveda, A. (2011): Economic Development and Growth in Colombia: An Empirical Analysis with Super-Efficiency DEA and Panel Data Models. Socio-Economic Planning Sciences, 45(4): 154164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkis, J. (2002): Preparing Your Data for DEA. In: Avkiran, N. : Productivity Analysis in the Service Sector with Data Envelopment Analysis . (2nd ed.) UQ Business School, The University of Queensland, Australia, Chapter 4.

    • Search Google Scholar
    • Export Citation
  • Sherman, H. D. Zhu, J. (2006): Service Productivity Management: Improving Service Performance Using Data Envelopment Analysis (DEA). Boston, MA, USA: Springer Science & Business Media.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, S. Nijkamp, P. (2016): An Evaluation of Energy-Environment Economic Efficiency for EU, APEC and ASEAN Countries: Design of a Target-Oriented DFM Model with Fixed Factors in Data Envelopment Analysis. Energy Policy, 88: 100112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Škuflić, L. Rabar, D. Škrinjarić, B. (2013): Assessment of the Efficiency of Croatia Compared to Other European Countries Using Data Envelopment Analysis with Application of Window Analysis. International Journal of Sustainable Economy, 5(1): 104123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thrall, R. M. (1996): Duality, Classification and Slacks in DEA. Annals of Operations Research, 6: 109138.

  • Vaz, B. C. Ferreira, A. P. (2019): Measuring Technical Efficiency of European Countries Using Data Envelopment Analysis. Imprensa da Universidade de Coimbra, pp. 1–19.

    • Search Google Scholar
    • Export Citation
  • Wang, K. Shiwei, Y. Zhang, W. (2013): China’s Regional Energy and Environmental Efficiency: A DEA Window Analysis Based Dynamic. Mathematical and Computer Modelling, 58(5–6): 11171127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C. N. Le, A. L . (2018): Measuring the Macroeconomic Performance among Developed Countries and Asian Developing Countries: Past, Present, and Future. Sustainability, 10(10): 118.

    • Search Google Scholar
    • Export Citation
  • Yang, H. Chang, C. (2009): Using DEA Window Analysis to Measure Efficiencies of Taiwan’s Integrated Telecommunication Firms. Telecommunication Policy, 33(1): 98108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, M. Li, Y. Chen, Y. Liang, L. (2014): An Equilibrium Efficiency Frontier Data Envelopment Analysis Approach for Evaluating Decision-Making Units with Fixed-Sum Outputs. European Journal of Operational Research, 239(2): 479489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
Submit Your Manuscript
 
The author instruction is available in PDF.
Please, download the file from HERE.

 

The description of the refereeing procedure is available in PDF.
Please, download the file from HERE.

 

 

Senior editors

Editor(s)-in-Chief: Prof. Dr. Mihályi, Péter

Editor(s): Ványai, Judit

Editorial Board

  • Ádám Török (Chairman) / University of Pannonia; Budapest University of Technology and Economics
  • Edina Berlinger / Corvinus University of Budapest, Department of Finance
  • Beáta Farkas / Faculty of Economics and Business Administration, University of Szeged
  • Péter Halmai / Budapest University of Technology and Economics; National University of Public Service
  • István Kónya / Institute of Economics Centre for Regional and Economic Studies, University of Pécs
  • János Köllő / Institute of Economics Centre for Regional and Economic Studies
  • István Magas / Corvinus University of Budapest, Department of World Economy; University of Physical Education, Department. of Sports and Decision Sciences
 

Advisory Board

  • Ǻslund, Anders, Institute of International Economics, Washington (USA)
  • Kolodko, Grzegorz, Kozminski University, Warsaw (Poland)
  • Mau, Vladimir, Academy of National Economy (Russia)
  • Messerlin, Patrick A, Groupe d’Economie Mondiale (France)
  • Saul Estrin, London School of Economics (UK)
  • Wagener, Hans-Jürgen, Europa Universität Viadrina (Germany)

Corvinus University of Budapest
Department of Economics
Fővám tér 8 Budapest, H-1093, Hungary
E-mail: vanyai.judit@krtk.hu  

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • EconLit
  • Elsevier GEO Abstracts
  • GEOBASE
  • Index Copernicus
  • International Bibliographies IBZ and IBR
  • JEL
  • Referativnyi Zhurnal
  • RePEc
  • SCOPUS
  • Social Science Citation Index

 

2022  
Web of Science  
Total Cites
WoS
314
Journal Impact Factor 0.8
Rank by Impact Factor

Economics 334/380
TBA

Impact Factor
without
Journal Self Cites
0.6
5 Year
Impact Factor
0.8
Journal Citation Indicator 0.29
Rank by Journal Citation Indicator

Economics 421/581

 

Scimago  
Scimago
H-index
18
Scimago
Journal Rank
0.23
Scimago Quartile Score

Economics and Econometrics Q3

Scopus  
Scopus
Cite Score
1.1
Scopus
CIte Score Rank
Economics and Econometrics 521/705 (26th PCTL)
TBA
Scopus
SNIP
0.540

2021  
Web of Science  
Total Cites
WoS
285
Journal Impact Factor 0,939
Rank by Impact Factor Economics 326/379
Impact Factor
without
Journal Self Cites
0,646
5 Year
Impact Factor
0,740
Journal Citation Indicator 0,34
Rank by Journal Citation Indicator Economics 389/570
Scimago  
Scimago
H-index
15
Scimago
Journal Rank
0,285
Scimago Quartile Score Economics and Econometrics (Q3)
Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Economics and Econometrics 436/696 (Q3)
Scopus
SNIP
0,507

2020  
Total Cites 275
WoS
Journal
Impact Factor
0,875
Rank by Economics 325/377 (Q4)
Impact Factor  
Impact Factor 0,534
without
Journal Self Cites
5 Year 0,500
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Economics 347/549 (Q3)
Citation Indicator   
Citable 37
Items
Total 37
Articles
Total 0
Reviews
Scimago 13
H-index
Scimago 0,292
Journal Rank
Scimago Economics and Econometrics Q3
Quartile Score  
Scopus 225/166=1,4
Scite Score  
Scopus Economics and Econometrics 392/661 (Q3)
Scite Score Rank  
Scopus 0,668
SNIP  
Days from  289
submission  
to acceptance  
Days from  447
acceptance  
to publication  

2019  
Total Cites
WoS
212
Impact Factor 0,914
Impact Factor
without
Journal Self Cites
0,728
5 Year
Impact Factor
0,650
Immediacy
Index
0,156
Citable
Items
45
Total
Articles
45
Total
Reviews
0
Cited
Half-Life
3,9
Citing
Half-Life
9,5
Eigenfactor
Score
0,00015
Article Influence
Score
0,052
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,01891
Average
IF
Percentile
28,437
Scimago
H-index
12
Scimago
Journal Rank
0,439
Scopus
Scite Score
214/165=1,3
Scopus
Scite Score Rank
Economics and Econometrics 355/637 (Q3)
Scopus
SNIP
0,989

 

Acta Oeconomica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 620 EUR / 750 USD
Print + online subscription: 724 EUR / 880 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Oeconomica
Language English
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0001-6373 (Print)
ISSN 1588-2659 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 10 0 0
Jul 2023 18 0 0
Aug 2023 20 0 0
Sep 2023 23 0 0
Oct 2023 24 3 0
Nov 2023 12 7 0
Dec 2023 24 0 0