This research developed an analytical framework for industry-oriented leading cyclical indicators (CII), focusing on monitoring and forecasting economic cycles within the European Union (EU). Various methodologies for constructing these indicators were examined through an exhaustive sector analysis. A salient conclusion drawn is the non-feasibility of a one-size-fits-all composite leading indicator for all EU members. It underscores the imperative to tailor these indicators in congruence with the unique industrial characteristics of each country. The study provides empirical evidence that countries like Denmark, Germany, Austria, Estonia, Lithuania, Latvia, Finland and Sweden can benefit from high-caliber composite leading indicators tailored to their economies. Our analysis suggests that GDP is a more robust metric than the Industrial Production Index for predicting economic cycles for the EU countries.
Aerle, B. – Keppler, M. – Seymen, A. – Weyerstrass, K. (2012): Economic Sentiment Shocks and Fluctuations in Economic Activity in the Euro Area. Intereconomics: Review of European Economic Policy, 47(1): 44–51.
Atabek, A. – Cosar, E. E. – Sahinöz, S. (2005): A New Composite Leading Indicator for Turkish Economic Activity. Emerging Markets Finance and Trade, 41(1): 45–64.
Bandholz, H. (2005): New Composite Leading Indicators for Hungary and Poland. Ifo Working Paper, No. 3, ifo Institute – Leibniz Institute for Economic Research at the University of Munich.
Bjørnland, H. C. – Ravazzolo, F. – Thorsrud, L. A. (2017): Forecasting GDP with Global Components: This Time Is Different. International Journal of Forecasting, 33(1): 153–173. https://doi.org/10.2139/ssrn.2602492.
Brunhes-Lesage, V. – Darné, O. (2012): Nowcasting the French Index of Industrial Production: A Comparison from Bridge and Factor Models. Economic Modelling, 29(6): 2174–2182. https://doi.org/10.1016/j.econmod.2012.04.011.
Bulligan, G. – Marcellino, M. – Venditti, F. (2015): Forecasting Economic Activity with Targeted Predictors. International Journal of Forecasting, 31(1): 188–206. https://doi.org/10.1016/J.Ijforecast.2014.03.004.
Cepni, O. – Güney, I. E. – Swanson, N. R. (2019): Nowcasting and Forecasting GDP in Emerging Markets Using Global Financial and Macroeconomic Diffusion Indexes. International Journal of Forecasting, 35(2): 555–572. https://doi.org/10.2139/ssrn.3208812.
Czesaný, S. – Macháčková, L. – Sedláček, P. (2007): Monitoring and Analysis of the Business Cycle. Prague: Czech Statistical Office.
Eickmeier, S. (2009): Comovements and Heterogeneity Analyzed in a Non-Stationary Dynamic Factor Model. Journal of Applied Econometrics, 24: 933–959. https://doi.org/10.2139/Ssrn.922594.
Erkisi, K. – Tekin, U. E. (2019): The Relationship Between Intermediate and Capital Goods Imports, Industrial Production and Economic Growth: The Case of Turkey. Yaşar Üniversitesi E-Dergisi, 14(55): 358–368. https://doi.org/10.19168/Jyasar.516702.
European Commission (2022): Eurostat’s Business Cycle Clock (BCC). A User's Guide.
Eurostat (2023): Economic Sentiment Indicator – Products Datasets – Eurostat. Luxembourg.
Eurostat (2017): Handbook on Cyclical Composite Indicators. Luxembourg.
Fichtner, F. – Rüffer, R. – Schnatz, B. (2009): Leading Indicators in a Globalised World. ECB Working Paper, No. 1125. https://doi.org/10.2139/ssrn.1516168.
Gayer, Ch. (2007): The Economic Climate Tracer: A Tool to Visualise the Cyclical Stance of the Economy Using Survey Data. European Commision Report.
Gyomai, G. – Guidetti, E. (2008): OECD System of Composite Leading Indicators. OECD.
Handbuch, H. (2015): Wirtschaftsindikatoren unter der Lupe. Landesbank Hessen-Thüringen.
Jiang, B. – Athanasopoulos, G. – Hyndman, R. J. – Panagiotelis, A. – Vahid, F. (2017): Macroeconomic Forecasting for Australia Using a Large Number of Predictors. Monash Econometrics and Business Statistics Working Papers, No. 2.
Kľúčik, M. (2009): Composite Reference Series and Composite Leading Indicator for Slovakia. Presentation at the First Macroeconomic Forecasting Conference – MFC, Rome.
Kľúčik, M. – Haluška, J. (2008): Construction of Composite Leading Indicator for Slovak Economy. Stiin Ńe Economice, 55: 362–370.
Kovacic, Z. – Vilotic, M. (2017): Characterising and Testing European Business Cycles Asymmetry. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(3): 453–468. https://doi.org/10.24136/eq.v12i3.24.
Kranendonk, H. – Bonenkamp, J. – Verbruggen, J. (2004): A Leading Indicator for the Dutch Economy, Methodological and Empirical Revision of the CPB System. Working Paper, No. 32. https://www.cpb.nl/sites/default/files/publicaties/download/leading-indicator-dutch-economy-methodological-and-empirical-revisioncpb-system.pdf.
Kulendran, N. – Wong, K. K. F. (2011): Determinants versus Composite Leading Indicators in Predicting Turning Points in Growth Cycle. Journal of Travel Research, 50(4): 417–430. https://doi.org/10.1177/0047287510373280.
Lv, S. – Xu, Z. – Fan, X. – Qin, Y. – Skare, M. (2023): The Mean Reversion/Persistence of Financial Cycles: Empirical Evidence for 24 Countries Worldwide. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(1), 11–47. https://doi.org/10.24136/eq.2023.001.
Mester, I. T. (2007): Indicator Approach to Business Cycle Analysis. Fascicle of Management and Technological Engineering, 6(17): 120–136.
Nasiri, H. – Taghizadeh, K. – Amiri, B. – Shaghaghi Shahri, V. (2017): Developing Composite Leading Indicators to Forecast Industrial Business Cycles in Iran. International Journal of Research in Industrial Engineering, 6(1): 69–89. https://doi.org/10.22105/riej.2017.48026.
Nilsson, R. – Brunet, O. (2006): Composite Leading Indicators for Major OECD Non-Member Economies: Brazil, China, India, Indonesia, Russian Federation, South Africa. Paris: OECD Publishing.
Ojo, M. O. – Aguiar-Conraria, L. – Soares, M. J. (2023): The Performance of OECD's Composite Leading Indicator. International Journal of Finance and Economics, 29(2): 2265-2277 https://doi.org/10.1002/ijfe.2784.
Orbex (2016): What Is ZEW Economic Sentiment Index & Levels to Watch. https://www.orbex.com/blog/2016/10/what-is-zew-economic-sentiment-index.
OECD (2008): Handbook on Constructing Composite Indicators: Methodology and User Guide. Paris: OECD Publishing.
OECD (2023): Composite Leading Indicators: Reference Turning Points and Component Series. https://www.oecd.org/sdd/leading-indicators/oecdcompositeleadingindicatorsreferenceturningpointsandcomponentseries.htm.
Ozyildirim, A. – Schaitkin, B. – Zarnowitz, V. (2010): Business Cycles in the Euro Area Defined with Coincident Economic Indicators and Predicted with Leading Economic Indicators. Journal of Forecasting, 29(1–2): 6–28.
Pawęta, B. (2018): Impact of the Global Financial Crisis on the Business Cycle in the Visegrad Group. Entrepreneurial Business and Economics Review, 6(3): 43–58. https://doi.org/10.15678/EBER.2018.060303.
Schilcht, E. (2005): Estimating the Smoothing Parameter in the So-called Hodrick-Prescott Filter. Journal of the Japanese Statistical Society, 35(1): 99–119. https://doi.org/10.14490/jjss.35.99.
Schumacher, C. (2010): Factor Forecasting Using International Targeted Predictors: The Case of German GDP. Economics Letters, 107(2): 95–98.
Skare, M. – Gil-Alana, L. A. – Claudio-Quiroga, G. – Pržiklas Družeta, R. (2021): Income Inequality in China 1952-2017: Persistence and Main Determinants. Oeconomia Copernicana, 12(4): 863–888. https://doi.org/10.24136/oc.2021.028.
Skare, M. – Franc-Dąbrowska, J. – Cvek, D. (2023): Cointegration Analysis and VECM of FDI, Employment, Export and GDP in Croatia (2002-2017) with Particular Reference to the Global Crisis and Poor Macroeconomic Governance. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(4): 761–783. https://doi.org/10.24136/eq.2020.033(Original work published December 20, 2020).
Stjepanovic, S. – Tomic, D. – Skare, M. (2022): A New Database on Green GDP; 1970-2019: A Framework for Assessing the Green Economy. Oeconomia Copernicana, 13(4): 949–975. https://doi.org/10.24136/oc.2022.027.
Tomic, D. – Stjepanovic, S. (2018): Empirical Tests of Various Cycle Extraction Methods; GDP vs. Industrial Production in Croatia. In: Economic and Social Development: Book of Proceedings, pp. 27–37.
Trimbur, T. M. (2006): Detrending Economic Time Series: A Bayesian Generalization of the Hodrick-Prescott Filter. Journal of Forecasting, 25(4): 247–273. https://doi.org/10.1002/for.987.
Vraná, L. (2018): On Extending Composite Leading Indicators by International Economic Series. Statistika, 98(2): 113–134.
Zalewski, K. (2009): Forecasting Turning Points with Composite Leading Indicators – The Case of Poland. Ekonomia Journal, 24: 61–69.
Wang, X. –Xu, Z. – Wang, X. – Skare, M. (2022): A Review of Inflation from 1906 to 2022: A Comprehensive Analysis of Inflation Studies from a Global Perspective. Oeconomia Copernicana, 13(3): 595–631.
Wirtschaftswoche (2017): Serie Frühindikatoren (VII). Earlybird-Indikator. http://www.wiwo.de/politik/konjunktur/seriefruehindikatoren-vii-earlybird-indikator-frueher-vogel/10306798.html.