On brief exposure of Azolla fronds to salinity stress, a significant decrease in photosynthetic pigment like chlorophyll and carotenoid with a decrease in ascorbate and glutathione content was observed. Lipid peroxidation increases with doses of NaCl stress resulting a greater membrane damage supported by increase in superoxide radical. However, increase in activities of superoxide dismutase, catalase, guaiacol peroxidase and glutathione reductase showed the development of biochemical defence mechanism against free radicals generated during exposure to short-term salinity stress. K+ ion was found to be decreased with increasing NaCl concentration, with a decrease in relative water content. An increase in fresh mass was observed, with a significant increase in dry mass suggested a development of salt tolerance in Azolla exposed to short-term salinity stress.