View More View Less
  • 1 Alexandria University Department of Botany and Microbiology, Faculty of Science 21511 Alexandria Egypt
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $692.00

The effect of aluminium was investigated on the seedlings pre-treated by two concentrations of boron 4 μM or 32 μM grown in water culture using a concentration of 500 μM Al for 3 days. Semithin and ultrathin sections of the apical region of the roots and transmission electron microscopy micrographs were analysed of fourteen-day-old Al-tolerant (‘Sakha 93’) cultivar of Triticum aestivum. Results showed that the amelioration effect of boron treatment was pronounced at 32 μM B level. Rigidity of cell wall and plasma membrane in the wheat root apex cells (Zone of root hairs) could result from the formation of bonds of ions of the toxicant with components within their structures and appears as dark precipitants in cross sections. Cross sections of the apical region of the control plant roots showed well-developed normal anatomical structure and cell ultrastructure typical for those of root regions. Slight alterations under the influence of aluminium or boron alone or both of them and the role exhibited by boron in ameliorating of aluminium toxicity were observed. In spite of these alterations, the seedlings keep grown in face of Al-stress. The obtained results proved the high resistance of the studied ‘Sakha 93’ cultivar to aluminium stress. Aluminium detoxification coincides with increased Ca2+ content in the root apex to cope with alleviation of Al-stress; boron may have a role in this concern. Possible Al-toxicity and -tolerance, as well as boron alleviation of toxicant stress in this tolerant cultivar was briefly discussed.

  • Ahn, S. J. and Matsumoto, H. (2006): The role of the plasma membrane in the response of plant roots to aluminum toxicity. — Plant Signal. Behavior1: 37–45.

    Matsumoto H. , 'The role of the plasma membrane in the response of plant roots to aluminum toxicity ' (2006 ) 1 Plant Signal. Behavior : 37 -45.

    • Search Google Scholar
  • Ahn, S. J., Rengel, Z. and Matsumoto, H. (2004): Aluminium-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. — New Phytol.162: 71–79.

    Matsumoto H. , 'Aluminium-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum ' (2004 ) 162 New Phytol. : 71 -79.

    • Search Google Scholar
  • Ahn, S. J., Sivaguru, M., Chung, C. G., Rengel, Z. and Matsumoto, H. (2002): Aluminium induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). — J. Exp. Bot.10: 1959–1966.

    Matsumoto H. , 'Aluminium induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo) ' (2002 ) 10 J. Exp. Bot. : 1959 -1966.

    • Search Google Scholar
  • Ahn, S. J., Sivaguru, M., Osawa, H., Chung, G. C. and Matsumoto, H. (2001): Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. — Plant Physiol.126: 1381–1390.

    Matsumoto H. , 'Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots ' (2001 ) 126 Plant Physiol. : 1381 -1390.

    • Search Google Scholar
  • Ali, B., Hasan, S. A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q. and Ahmad, A. (2008): A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). — Environ. Exp. Botany62: 153–159.

    Ahmad A. , 'A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek) ' (2008 ) 62 Environ. Exp. Botany : 153 -159.

    • Search Google Scholar
  • Barcelo, J. and Poschenrieder, C. (2002): Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. — Environ. Exp. Bot.48: 75–92.

    Poschenrieder C. , 'Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review ' (2002 ) 48 Environ. Exp. Bot. : 75 -92.

    • Search Google Scholar
  • Blamey, F. P. C. (2001): The role of cell wall in aluminum toxicity. — In: Ae, N., Arihara, J., Okada, K. and Srinivasan, A. (eds): Plant nutrient acquisition: new perspectives. Springer Verlag, Tokyo, pp. 201–226.

    Blamey F. P. C. , '', in Plant nutrient acquisition: new perspectives , (2001 ) -.

  • Cakmak, I., Kurz, H. and Marschner, H. (1995): Short-term effects of boron, germination and high light intensity on membrane permeability in boron deficient leaves of sunflower. — Physiol. Plant.95: 11–18.

    Marschner H. , 'Short-term effects of boron, germination and high light intensity on membrane permeability in boron deficient leaves of sunflower ' (1995 ) 95 Physiol. Plant. : 11 -18.

    • Search Google Scholar
  • Caldwell, C. (1989): Analysis of aluminum and divalent cations binding to wheat root plasma membrane proteins using terbium phosphorescence. — Plant Physiol.91: 233–241.

    Caldwell C. , 'Analysis of aluminum and divalent cations binding to wheat root plasma membrane proteins using terbium phosphorescence ' (1989 ) 91 Plant Physiol. : 233 -241.

    • Search Google Scholar
  • Castilhos, G., Farias, J. G., de Bernardi Schneider, A., de Oliveira, P. H., Nicoloso, F. T., Schetinger, M. R. C. and Delatorre, C. A. (2010): Aluminum-stress response in oat genotypes with monogenic tolerance. — Environ. Exp. Bot.74: 114–121.

    Delatorre C. A. , 'Aluminum-stress response in oat genotypes with monogenic tolerance ' (2010 ) 74 Environ. Exp. Bot. : 114 -121.

    • Search Google Scholar
  • Chang, Y. C., Yamamoto, Y. and Matsumoto, H. (1999): Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. — Plant Cell Environ.22: 1009–1017.

    Matsumoto H. , 'Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron ' (1999 ) 22 Plant Cell Environ. : 1009 -1017.

    • Search Google Scholar
  • Charron, A. J. and Quatrano, R. S. (2009): Between a rock and a dry place: the water stressed moss. — Mol. Plant2: 478–486.

    Quatrano R. S. , 'Between a rock and a dry place: the water stressed moss ' (2009 ) 2 Mol. Plant : 478 -486.

    • Search Google Scholar
  • Čiamporová, M. (2002): Diverse response of root cell structure to aluminum stress. — Plant and Soil226: 113–116.

    Čiamporová M. , 'Diverse response of root cell structure to aluminum stress ' (2002 ) 226 Plant and Soil : 113 -116.

    • Search Google Scholar
  • Clune, T. S. and Copeland, L. (1999): Effects of aluminum on canola roots. — Plant and Soil216: 27–33.

    Copeland L. , 'Effects of aluminum on canola roots ' (1999 ) 216 Plant and Soil : 27 -33.

  • Crawford, S. A. and Wilkens, S. (1997): Ultrastructural changes in root cap cells of two Australian native grass species following exposure to aluminum. — Aust. J. Plant Physiol.24: 165–174.

    Wilkens S. , 'Ultrastructural changes in root cap cells of two Australian native grass species following exposure to aluminum ' (1997 ) 24 Aust. J. Plant Physiol. : 165 -174.

    • Search Google Scholar
  • Corrales, I., Poschenrieder, C. and Barcelo, J. (2007): Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. — J. Plant Physiol.165: 504–513.

    Barcelo J. , 'Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species ' (2007 ) 165 J. Plant Physiol. : 504 -513.

    • Search Google Scholar
  • Delhaize, E., Craig, S., Beaton, C. D., Bennet, A. J., Jagadish, V. C. and Randal, P. I. (1993): Aluminum tolerance in wheat (Triticum aestivum L.). 1. Uptake and distribution of aluminum in root apices. — Plant Physiol. 103: 315–332.

    Randal P. I. , 'Aluminum tolerance in wheat (Triticum aestivum L.). 1. Uptake and distribution of aluminum in root apices ' (1993 ) 103 Plant Physiol : 315 -332.

    • Search Google Scholar
  • Doncheva, S., Amenos, M., Poschenrieder, C. and Barcelo J. (2005): Root cell patterning: a primary target for aluminium toxicity in maize. — J. Exp. Bot.56: 1213–1220.

    Barcelo J. , 'Root cell patterning: a primary target for aluminium toxicity in maize ' (2005 ) 56 J. Exp. Bot. : 1213 -1220.

    • Search Google Scholar
  • Ezaki, B., Sivaguru, M., Ezaki, Y., Matsumoto, H. and Gardner, R. C. (1999): Acquisition of aluminum tolerance in Saccharomyces cerevisiae by expression of the BCB or NtGDI1 gene derived from plants. — FEMS Microbiol. Lett.171: 81–87.

    Gardner R. C. , 'Acquisition of aluminum tolerance in Saccharomyces cerevisiae by expression of the BCB or NtGDI1 gene derived from plants ' (1999 ) 171 FEMS Microbiol. Lett. : 81 -87.

    • Search Google Scholar
  • Foy, C. D. (1992): Soil chemical factors limiting plant growth. — In: Hatfield, I. L. and Stewart, B. A. (eds): Advances in soil science: limitations to plant root growth. Vol. 19. Springer Verlag, New York, pp. 97–149.

    Foy C. D. , '', in Advances in soil science: limitations to plant root growth. Vol. 19 , (1992 ) -.

  • Garvin, D. F. and Carver, B. F. (2003): Role of genotypes tolerant of acidity and aluminum toxicity. — In: Rengel, Z. (ed.): Handbook of soil acidity. Marcel Dekker Inc., New York, pp. 387–406.

    Carver B. F. , '', in Handbook of soil acidity , (2003 ) -.

  • Godbold, D. L., Fritz, E. and Huttermann, H. (1988): Aluminum toxicity and forest decline. — Proc. Nat. Acad. Sci. USA85: 3888–3892.

    Huttermann H. , 'Aluminum toxicity and forest decline ' (1988 ) 85 Proc. Nat. Acad. Sci. USA : 3888 -3892.

    • Search Google Scholar
  • Guo, T. R., Zhang, G. P., Zhou, M. X., Wu, F. B. and Chen, J. X. (2007): Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. — Pedosphere17: 505–512.

    Chen J. X. , 'Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars ' (2007 ) 17 Pedosphere : 505 -512.

    • Search Google Scholar
  • Hodson, M. J. and Wilkins, D. A. (1991): Localization of aluminium in the roots of Norway spruce (Picea abies (L.) Karst.) inoculated with Paxillus involutus Fr. — New Phytol.118: 273–278.

    Wilkins D. A. , 'Localization of aluminium in the roots of Norway spruce (Picea abies (L.) Karst.) inoculated with Paxillus involutus Fr ' (1991 ) 118 New Phytol. : 273 -278.

    • Search Google Scholar
  • Horst, W. J. (1995): The role of the apoplast in aluminum toxicity and resistance of higher plants: a review. — Z. Pflanzenernaehr. Bodenkd.158: 419–428.

    Horst W. J. , 'The role of the apoplast in aluminum toxicity and resistance of higher plants: a review ' (1995 ) 158 Z. Pflanzenernaehr. Bodenkd. : 419 -428.

    • Search Google Scholar
  • Horst, W. J., Wang, Y. and Eticha, D. (2010): The role of the root apoplast in aluminum-induced inhibition of root elongation and in aluminum resistance of plants: a review. — Ann. Bot.106: 185–197.

    Eticha D. , 'The role of the root apoplast in aluminum-induced inhibition of root elongation and in aluminum resistance of plants: a review ' (2010 ) 106 Ann. Bot. : 185 -197.

    • Search Google Scholar
  • Horst, W. J., Schmohl, N., Kollmeier, M., Baluska, F. and Sivaguru, M. (1999): Does aluminum effect root growth of maize through interaction with the cell wall — plasma membrane — cytoskeleton continuum? — Plant and Soil215(2): 163–174.

    Sivaguru M. , 'Does aluminum effect root growth of maize through interaction with the cell wall — plasma membrane — cytoskeleton continuum? ' (1999 ) 215 Plant and Soil : 163 -174.

    • Search Google Scholar
  • Hossain, A. K. M. Z., Koyama, H. and Hara, T. (2006): Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. — J. Plant Physiol.163: 39–47.

    Hara T. , 'Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress ' (2006 ) 163 J. Plant Physiol. : 39 -47.

    • Search Google Scholar
  • Inostroza-Blancheteau, C., Reyes-Díaz, M., Aquea, F., Nunes-Nesi, A., Alberdi, M., Arce-Johnson, P. (2011): Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium corymbosum L.). — Plant Physiol. Biochem.49(9): 1005–1012.

    Arce-Johnson P. , 'Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium corymbosum L.) ' (2011 ) 49 Plant Physiol. Biochem. : 1005 -1012.

    • Search Google Scholar
  • Jones, D. L., Blancaflor, E. B., Kochian, L. V. and Gilroy, S. (2006): Spatial coordination of aluminum uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. — Plant Cell Environ.29: 1309–1318.

    Gilroy S. , 'Spatial coordination of aluminum uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots ' (2006 ) 29 Plant Cell Environ. : 1309 -1318.

    • Search Google Scholar
  • Kochian, L. V. (1995): Cellular mechanisms of aluminum toxicity and resistance in plants. — Ann. Rev. Plant Physiol. Plant Mol. Biol.55: 459–493.

    Kochian L. V. , 'Cellular mechanisms of aluminum toxicity and resistance in plants ' (1995 ) 55 Ann. Rev. Plant Physiol. Plant Mol. Biol. : 459 -493.

    • Search Google Scholar
  • Kochian, L. V., Hoekenga, O. A. and Pińeros, M. A. (2004): How do crop plants tolerate acid soil? Mechanism of aluminum tolerance and phosphorous deficiency. — Ann. Rev. Plant Biol.55: 459–493.

    Pińeros M. A. , 'How do crop plants tolerate acid soil? Mechanism of aluminum tolerance and phosphorous deficiency ' (2004 ) 55 Ann. Rev. Plant Biol. : 459 -493.

    • Search Google Scholar
  • Kochian, L. V., Pence, N. S., Letham, D. L. D., Pińeros, M. A., Magalhaes, J. V., Hoekenga, O. A. and Garvin, D. F. (2002): Mechanisms of metal resistance in plants: aluminum and heavy metals. — Plant and Soil247: 109–119.

    Garvin D. F. , 'Mechanisms of metal resistance in plants: aluminum and heavy metals ' (2002 ) 247 Plant and Soil : 109 -119.

    • Search Google Scholar
  • Luft, J. H. (1961): Improvement in epoxy resin embedding method. — J. Biophys. Biochem. Cytol.9: 409–414.

    Luft J. H. , 'Improvement in epoxy resin embedding method ' (1961 ) 9 J. Biophys. Biochem. Cytol. : 409 -414.

    • Search Google Scholar
  • Ma, J. F. (2000): Role of organic acids in detoxification of aluminum in higher plants. — Plant Cell Physiol.41(4): 383–390.

    Ma J. F. , 'Role of organic acids in detoxification of aluminum in higher plants ' (2000 ) 41 Plant Cell Physiol. : 383 -390.

    • Search Google Scholar
  • Ma, J. F., Ryan, P. R. and Delhaize, E. (2001): Aluminum tolerance in plants and the complexing role of organic acids. — Trends Plant Sci.6: 273–278.

    Delhaize E. , 'Aluminum tolerance in plants and the complexing role of organic acids ' (2001 ) 6 Trends Plant Sci. : 273 -278.

    • Search Google Scholar
  • Ma, J. F., Shen, R., Nagao, S. and Tanimoto, E. (2004): Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. — Plant Cell Physiol.45: 583–589.

    Tanimoto E. , 'Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots ' (2004 ) 45 Plant Cell Physiol. : 583 -589.

    • Search Google Scholar
  • Marienfeld, S., Schmohl, N., Klein, M., Schröder, W. H., Kuhn, A. J. and Horst, W. (2000): Localization of aluminium in root tips of Zea mays and Vicia faba. — J. Plant Physiol.156: 666–671.

    Horst W. , 'Localization of aluminium in root tips of Zea mays and Vicia faba ' (2000 ) 156 J. Plant Physiol. : 666 -671.

    • Search Google Scholar
  • Marschner, H. and Mengel, K. (1966): Der Einfluss von Ca und H-Ionen bei unterschiedlichen Stoff wechselbedingungen. — Z. Pflanzenernaehr. Bodenkd.112: 39–49.

    Mengel K. , 'Der Einfluss von Ca und H-Ionen bei unterschiedlichen Stoff wechselbedingungen ' (1966 ) 112 Z. Pflanzenernaehr. Bodenkd. : 39 -49.

    • Search Google Scholar
  • Matsumoto, H. (2000): Cell biology of aluminum toxicity and tolerance in higher plants. — Int. Rev. Cytol.200: 1–46.

    Matsumoto H. , 'Cell biology of aluminum toxicity and tolerance in higher plants ' (2000 ) 200 Int. Rev. Cytol. : 1 -46.

    • Search Google Scholar
  • Mohanty, S., Das, A. B., Das, P. and Mohanty, P. (2004): Effect of a low dose of aluminum on mitotic and meiotic activity, 4c DNA content, and pollen sterility in rice, Oryza sativa L. cv. Lalat. — Ecotox. Environ. Safety59: 70–75.

    Mohanty P. , 'Effect of a low dose of aluminum on mitotic and meiotic activity, 4c DNA content, and pollen sterility in rice, Oryza sativa L. cv. Lalat ' (2004 ) 59 Ecotox. Environ. Safety : 70 -75.

    • Search Google Scholar
  • Nagy, N. E., Dalen, L. S., Jones, D. L., Swensen, B., Fossdal, C. G. and Eldhuset, T. D. (2004): Cytological and enzymatic responses to aluminium stress in root tips of Norway spruce seedlings. — New Phytol.163: 595–607.

    Eldhuset T. D. , 'Cytological and enzymatic responses to aluminium stress in root tips of Norway spruce seedlings ' (2004 ) 163 New Phytol. : 595 -607.

    • Search Google Scholar
  • Oleksyn, J., Karolewski, P., Giertych, M. J., Werner, A., Tjoelker, M. G. and Reich, P. B. (1996): Altered root growth and plant chemistry of Pinus sylvestris seedlings subjected to aluminum in nutrient solution. — Trees10: 135–144.

    Reich P. B. , 'Altered root growth and plant chemistry of Pinus sylvestris seedlings subjected to aluminum in nutrient solution ' (1996 ) 10 Trees : 135 -144.

    • Search Google Scholar
  • Olivetti, G. P., Cumming, J. R. and Etherton, B. (1995): Membrane potential depolarization of root cap cells precedes aluminum tolerance in snap bean. — Plant Physiol.109: 123–129.

    Etherton B. , 'Membrane potential depolarization of root cap cells precedes aluminum tolerance in snap bean ' (1995 ) 109 Plant Physiol. : 123 -129.

    • Search Google Scholar
  • Panda, S. K. and Matsumoto, H. (2007): Molecular physiology of aluminum toxicity and tolerance in plants. — Bot. Rev.73: 326–347.

    Matsumoto H. , 'Molecular physiology of aluminum toxicity and tolerance in plants ' (2007 ) 73 Bot. Rev. : 326 -347.

    • Search Google Scholar
  • Pavlovkin, J. and Mistrík, I. (1999): Phytotoxic effect of aluminium on maize root membranes. — Biologia54: 473–479.

    Mistrík I. , 'Phytotoxic effect of aluminium on maize root membranes ' (1999 ) 54 Biologia : 473 -479.

    • Search Google Scholar
  • Pietraszewska, T. M. (2001): Effect of aluminium on plant growth and metabolism. — Acta Bioch. Polonica48: 673–686.

    Pietraszewska T. M. , 'Effect of aluminium on plant growth and metabolism ' (2001 ) 48 Acta Bioch. Polonica : 673 -686.

    • Search Google Scholar
  • Pińeros, M. and Tester, M. (1993): Plasma membrane Ca2+ channels in roots of higher plants and their role in aluminium toxicity. — Plant and Soil155–156: 119–122.

    Tester M. , 'Plasma membrane Ca2+ channels in roots of higher plants and their role in aluminium toxicity ' (1993 ) 155–156 Plant and Soil : 119 -122.

    • Search Google Scholar
  • Polle, E., Konzak, C. F. and Kittrick, J. A. (1978): Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. — Crop Sci.18: 823–827.

    Kittrick J. A. , 'Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots ' (1978 ) 18 Crop Sci. : 823 -827.

    • Search Google Scholar
  • Raman, H., Ryan, P. R., Raman, R., Stodart, B. J., Zhang, K., Martin, P., Wood, R., Sasaki, T., Yamamoto, Y. and Mackay, M. (2008): Analysis of TaAlMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). — Theor. Appl. Genet.116: 343–354.

    Mackay M. , 'Analysis of TaAlMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.) ' (2008 ) 116 Theor. Appl. Genet. : 343 -354.

    • Search Google Scholar
  • Rangel, A. F., Rao, I. M. and Horst, W. J. (2007): Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. — J. Exp. Bot.58(14): 3895–3904.

    Horst W. J. , 'Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance ' (2007 ) 58 J. Exp. Bot. : 3895 -3904.

    • Search Google Scholar
  • Rengel, Z. and Zhang, W. H. (2003): Role of dynamics of intracellular calcium aluminum toxicity syndrome. — New Phytol.159: 295–314.

    Zhang W. H. , 'Role of dynamics of intracellular calcium aluminum toxicity syndrome ' (2003 ) 159 New Phytol. : 295 -314.

    • Search Google Scholar
  • Ryan, P. R. and Kochian, L. V. (1993): Interaction between aluminum toxicity and calcium uptake at root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerance. — Plant Physiol.102: 975–982.

    Kochian L. V. , 'Interaction between aluminum toxicity and calcium uptake at root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerance ' (1993 ) 102 Plant Physiol. : 975 -982.

    • Search Google Scholar
  • Ryan, P. R., Delhaize, E. and Jones, D. L. (2001): Function and mechanism of organic anion exudation from plant roots. — Ann. Rev. Plant Physiol. Plant Mol. Biol.52: 527–560.

    Jones D. L. , 'Function and mechanism of organic anion exudation from plant roots ' (2001 ) 52 Ann. Rev. Plant Physiol. Plant Mol. Biol. : 527 -560.

    • Search Google Scholar
  • Ryan, P. R., Di Tomaso, J. M. and Kochian, L. V. (1993): Aluminum toxicity in roots: investigation of spatial sensitivity and the role of the root cap in Al-tolerance. — J. Exp. Bot.44: 437–446.

    Kochian L. V. , 'Aluminum toxicity in roots: investigation of spatial sensitivity and the role of the root cap in Al-tolerance ' (1993 ) 44 J. Exp. Bot. : 437 -446.

    • Search Google Scholar
  • Samac, D. A. and Tesfaye, M. (2003): Plant improvement for tolerance to aluminum in acid soils — a review. — Plant Cell, Tissue and Organ Culture75: 189–207.

    Tesfaye M. , 'Plant improvement for tolerance to aluminum in acid soils — a review ' (2003 ) 75 Plant Cell, Tissue and Organ Culture : 189 -207.

    • Search Google Scholar
  • Sauvant, M. P., Pepin, D., Bohatier, J. and Groliere, C. A. (2004): Effect of chelators on the acute toxicity bioavailability of aluminum to Tetrahymena pyrifomis. — Aquatic Toxicol.47(3—4): 259–275.

    Groliere C. A. , 'Effect of chelators on the acute toxicity bioavailability of aluminum to Tetrahymena pyrifomis ' (2004 ) 47 Aquatic Toxicol. : 259 -275.

    • Search Google Scholar
  • Shelp, B. J. (1993): Physiology and biochemistry of boron in plants. — In: Gupta, U. C. (ed.): Boron and its role in crop production. CRC Press, Boca Raton, FL., pp. 53–85.

    Shelp B. J. , '', in Boron and its role in crop production , (1993 ) -.

  • Silva, I. R., Smythm, T. J., Israel, D. W., Raper, C. D. and Rufty, T. W. (2001): Magnesium is more efficient than calcium in alleviating aluminum toxicity in soybean and its ameliorative effect is not explained by the Gouy-Chapman-Sternmodel. — Plant Cell Physiol.42: 538–545.

    Rufty T. W. , 'Magnesium is more efficient than calcium in alleviating aluminum toxicity in soybean and its ameliorative effect is not explained by the Gouy-Chapman-Sternmodel ' (2001 ) 42 Plant Cell Physiol. : 538 -545.

    • Search Google Scholar
  • Silva, I. R., Smythm, T. J., Moxley, D. F., Carter, T. E., Allen, N. S. and Rufty, T. W. (2000): Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. — Plant Physiol.123: 543–552.

    Rufty T. W. , 'Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy ' (2000 ) 123 Plant Physiol. : 543 -552.

    • Search Google Scholar
  • Sivaguru, M. and Horst, W. J. (1998): The distal part of the transition zone is the most aluminum- sensitive apical root zone of Zea mays L. — Plant Physiol.116: 155–163.

    Horst W. J. , 'The distal part of the transition zone is the most aluminum- sensitive apical root zone of Zea mays L ' (1998 ) 116 Plant Physiol. : 155 -163.

    • Search Google Scholar
  • Sivaguru, M., Pike, S., Gassmann, W. and Baskin, T. I. (2003): Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. — Plant Cell Physiol.44: 667–675.

    Baskin T. I. , 'Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor ' (2003 ) 44 Plant Cell Physiol. : 667 -675.

    • Search Google Scholar
  • Sivaguru, M., Boluska, F., Volkmann, D., Felle, H. H. and Horst, W. J. (1999): Impacts of aluminum on the cytoskeleton of maize root apex. Short term effects on the distal part of the transition zone. — Plant Physiol.119: 1073–1082.

    Horst W. J. , 'Impacts of aluminum on the cytoskeleton of maize root apex. Short term effects on the distal part of the transition zone ' (1999 ) 119 Plant Physiol. : 1073 -1082.

    • Search Google Scholar
  • Stodart, B. J., Raman, H., Coombes, N. and Mackay, M. (2007): Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminum under low pH conditions. — Genet. Resource Crop Evol.54: 759–766.

    Mackay M. , 'Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminum under low pH conditions ' (2007 ) 54 Genet. Resource Crop Evol. : 759 -766.

    • Search Google Scholar
  • Tabuchi, A. and Matsumoto, H. (2001): Changes in cell wall properties of wheat (Triticum aestivum) roots during aluminium-induced growth inhibition. — Physiol. Plant.112: 353–358.

    Matsumoto H. , 'Changes in cell wall properties of wheat (Triticum aestivum) roots during aluminium-induced growth inhibition ' (2001 ) 112 Physiol. Plant. : 353 -358.

    • Search Google Scholar
  • Tang, C., Rengel, Z., Diatloff, E. and Gazey, C. (2003): Responses of wheat and barley to liming on a sandy soil with subsoil acidity. — Field Crops Res.80: 235–244.

    Gazey C. , 'Responses of wheat and barley to liming on a sandy soil with subsoil acidity ' (2003 ) 80 Field Crops Res. : 235 -244.

    • Search Google Scholar
  • Taylor, G. J. (1988): The physiology of aluminum phytotoxicity. — In: Sigel, H. and Sigel, A. (eds): Metal ions in biological systems. Vol. 24. Marcel Dekker, New York, pp. 123–163.

    Taylor G. J. , '', in Metal ions in biological systems. Vol. 24 , (1988 ) -.

  • Taylor, G. J. (1991): Current views of the aluminum stress response: the physiological basis of tolerance. — In: Randall, D. D., Blevins, D. G. and Miles, C. D. (eds): Current topics in plant biochemistry and physiology. Vol. 10. Ultraviolet B radiation stress, aluminum stress, toxicity and tolerance, boron requirements, stress and toxicity. University of Missouri, Columbia, pp. 57–93.

    Taylor G. J. , '', in Current topics in plant biochemistry and physiology. Vol. 10. Ultraviolet B radiation stress, aluminum stress, toxicity and tolerance, boron requirements, stress and toxicity , (1991 ) -.

  • Taylor, G. J., McDonald-Stephens, J. L., Hunter, D. B., Bertsch, P. M., Elmore, D., Rengel, Z. and Reid, R. J. (2000): Direct measurement of aluminum uptake and distribution in single cells of Chara coralline. — Plant Physiol.123(3): 987–996.

    Reid R. J. , 'Direct measurement of aluminum uptake and distribution in single cells of Chara coralline ' (2000 ) 123 Plant Physiol. : 987 -996.

    • Search Google Scholar
  • Teasdale, R. D. and Richards, D. K. (1990): Boron deficiency in cultured pine cells. Quantitative studies of the interaction with Ca and Mg. — Plant Physiol.93: 1071–1077.

    Richards D. K. , 'Boron deficiency in cultured pine cells. Quantitative studies of the interaction with Ca and Mg ' (1990 ) 93 Plant Physiol. : 1071 -1077.

    • Search Google Scholar
  • Vazquez, M. D., Poschenrieder, C., Corrales, I. and Barcelo, J. (1999): Apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. — Plant Physiol.119: 435–444.

    Barcelo J. , 'Apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety ' (1999 ) 119 Plant Physiol. : 435 -444.

    • Search Google Scholar
  • Venable, J. H. and Coggeshall, R. (1965): A simplified lead citrate stain for use in electron microscopy. — J. Cell Biol.25: 407–408.

    Coggeshall R. , 'A simplified lead citrate stain for use in electron microscopy ' (1965 ) 25 J. Cell Biol. : 407 -408.

    • Search Google Scholar
  • Von Uexküll, H. R. and Mutert, E. (1995): Global extent, development and economic impact of acid soils. — Plant and Soil171: 1–15.

    Mutert E. , 'Global extent, development and economic impact of acid soils ' (1995 ) 171 Plant and Soil : 1 -15.

    • Search Google Scholar
  • Wallae, S. and Anderson, I. C. (1984): Aluminium toxicity and DNA synthesis in wheat roots. — Agron. Journal76: 5–8.

    Anderson I. C. , 'Aluminium toxicity and DNA synthesis in wheat roots ' (1984 ) 76 Agron. Journal : 5 -8.

    • Search Google Scholar
  • Wang, Y., Stass, A. and Horst, W. J. (2004): Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. — Plant Physiol.136: 3762–3770.

    Horst W. J. , 'Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize ' (2004 ) 136 Plant Physiol. : 3762 -3770.

    • Search Google Scholar
  • Watanabe, T. and Osaki, M. (2002): Mechanism of adaptation to high aluminium condition in native plant species growing in acid soils: a review. — Comm. Soil Sci. Plant Anal.33: 1247–1260.

    Osaki M. , 'Mechanism of adaptation to high aluminium condition in native plant species growing in acid soils: a review ' (2002 ) 33 Comm. Soil Sci. Plant Anal. : 1247 -1260.

    • Search Google Scholar
  • White, P. and Broadley, M. R. (2003): Calcium in plants. — Ann. Bot.92: 487–511.

    Broadley M. R. , 'Calcium in plants ' (2003 ) 92 Ann. Bot. : 487 -511.

  • Yamamoto, Y., Kobayashi, Y. and Matsumoto, H. (2001): Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. — Plant Physiol.125: 199–208.

    Matsumoto H. , 'Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots ' (2001 ) 125 Plant Physiol. : 199 -208.

    • Search Google Scholar
  • Yamamoto, Y., Kobayashi, Y., Devi, S. R., Tikiishi, H. and Matsumoto, H. (2002): Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. — Plant Physiol.128: 63–72.

    Matsumoto H. , 'Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells ' (2002 ) 128 Plant Physiol. : 63 -72.

    • Search Google Scholar
  • Yamauchi, T., Hara, T. and Sonoda, Y. (1986): Distribution of calcium and boron in the pectin fraction of tomato leaf cell wall. — Plant Cell Physiol.93: 729–732.

    Sonoda Y. , 'Distribution of calcium and boron in the pectin fraction of tomato leaf cell wall ' (1986 ) 93 Plant Cell Physiol. : 729 -732.

    • Search Google Scholar
  • Yang, J. L., Ya, Y. L., Yue, J. Z., Shan, S. Z., Yun, R. W., Ping, W. and Shao, J. Z. (2008): Cell wall oligosaccharides are specifically involved in the exclusion of aluminum from the rice root apex. — Plant Physiol.146: 602–611.

    Shao J. Z. , 'Cell wall oligosaccharides are specifically involved in the exclusion of aluminum from the rice root apex ' (2008 ) 146 Plant Physiol. : 602 -611.

    • Search Google Scholar
  • Zakir, H. A. K. M., Takashi, O., Hiroyuki, K. and Tetsuo, H. (2005): Effect of enhanced calcium supply on aluminum toxicity in relation to cell wall properties in the root apex of two wheat cultivars differing in aluminum resistance. — Plant and Soil276: 193–204.

    Tetsuo H. , 'Effect of enhanced calcium supply on aluminum toxicity in relation to cell wall properties in the root apex of two wheat cultivars differing in aluminum resistance ' (2005 ) 276 Plant and Soil : 193 -204.

    • Search Google Scholar
  • Zheng, S. J. and Yang, J. L. (2005): Target sites of aluminium phytotoxicity. — Biol. Plant.49: 321–331.

    Yang J. L. , 'Target sites of aluminium phytotoxicity ' (2005 ) 49 Biol. Plant. : 321 -331.

  • Zhu, M. Y., Pan, J. W., Wang, L. L., Gu, Q. and Huang, C. Y. (2003): Mutation induced enhancement of Al tolerance in barley cell lines. — Plant Sci.164: 17–23.

    Huang C. Y. , 'Mutation induced enhancement of Al tolerance in barley cell lines ' (2003 ) 164 Plant Sci. : 17 -23.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

 

 

 

Senior editors

Managing Editors

  • László LŐKÖS
  • László PEREGOVITS

Editorial Board

  • Gy. BORBÉLY (Debrecen)
  • A. ČARNY (Ljubljana)
  • A. CSERGŐ (Dublin)
  • B. CZÚCZ (Paris)
  • M. HÖHN (Budapest)
  • K. T. KISS (Budapest)
  • A. KUZEMKO (Uman)
  • Z. LOSOSOVÁ (Brno)
  • I. MÁTHÉ (Szeged)
  • E. MIHALIK (Szeged)
  • S. ORBÁN (Eger)
  • R. PÁL (Butte)
  • Gy. PINKE (Mosonmagyaróvár)
  • T. PÓCS (Eger)
  • K. PRACH (České Budejovice)
  • E. S. RAUSCHERT (Cleveland)
  • E. RUPRECHT (Cluj Napoca)
  • G. SRAMKÓ (Debrecen)
  • A. T. SZABÓ (Veszprém)
  • É. SZŐKE (Budapest)
  • B. TOKARSKA-GUZIK (Katowice)
  • B. TÓTHMÉRÉSZ (Debrecen)
  • P. TÖRÖK (Debrecen)

Botta-Dukát, Zoltán
E-mail: botta-dukat.zoltan@okologia.mta.hu

or

Lőkös, László
E-mail: acta@bot.nhmus.hu
Institute: Botanical Department, Hungarian Natural History Museum
Address: Könyves K. krt. 40. H-1097 Budapest, Hungary

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Referativnyi Zhurnal

 

2020  
Scimago
H-index
19
Scimago
Journal Rank
0,417
Scimago
Quartile Score
Plant Science Q2
Ecology, Evolution, Behavior and Systematics Q3
Scopus
Cite Score
155/89=1,7
Scopus
Cite Score Rank
Plant Science 221/445 (Q2)
Ecology, Evolution, Behavior and Systematics 374/647 (Q3)
Scopus
SNIP
0,838
Scopus
Cites
260
Scopus
Documents
22
Days from submission to acceptance 127
Days from acceptance to publication 132
Acceptance
Rate
36%

 

2019  
Scimago
H-index
17
Scimago
Journal Rank
0,404
Scimago
Quartile Score
Plant Science Q2
Ecology, Evolution, Behavior and Systematics Q3
Scopus
Cite Score
164/91=1,8
Scopus
Cite Score Rank
Plant Science 209/431 (Q2)
Ecology, Evolution, Behavior and Systematics 358/629 (Q3)
Scopus
SNIP
0,699
Scopus
Cites
215
Scopus
Documents
23
Acceptance
Rate
30%

 

Acta Botanica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 580 EUR / 724 USD
Print + online subscription: 660 EUR / 824 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Botanica Hungarica
Language English
French
German
Russian
Spanish
Size B5
Year of
Foundation
1954
Publication
Programme
2021 Volume 63
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6495 (Print)
ISSN 1588-2578 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 2 0
Mar 2021 0 0 0
Apr 2021 1 0 0
May 2021 4 0 0
Jun 2021 1 0 0
Jul 2021 3 0 0
Aug 2021 0 0 0