Micromorphological studies revealed the developmental changes in micropropagated plants of Morinda citrifolia L. from in vitro conditions to field environment. The lower relative humidity, higher light intensity and septic stressful conditions in the field environment could make gradual changes in the micropropagated plants so as to adapt the external environment. Arrested stomatal development, single guard cells and indistinct subsidiaries were observed in vitro with highest stomatal density (52.0±0.11) obtained in the ambient in vitro environment. The development of tissues, epidermal ornamentation, efficient stomatal functionality and vein-islets numbers (12.0±0.0) during in vivo transfer may help in acclimation of micropropagated plants under field conditions. Raphides were observed in the in vitro propagated as well as in vivo transferred plantlets. The gradual acclimatisation and ex vitro rooting technique increased the survival rate of plantlets in the field. The micromorphological changes resulting from in vitro to field environments are important to understand the development of tissues and adaptation of micropropagated plants, which could help in improvement in survivability during field trials.
Chan-Blanco, Y., Vaillant, F., Mercedes Perez, A., Reynes, M., Brilluet, J.-M. and Brat, P. (2006): The noni fruit (Morinda citrifolia L.): a review of agricultural research, nutritional and therapeutic properties. — J. Food Comp. Anal. 19: 645–654. https://doi.org/10.1016/j.jfca.2005.10.001
Chirinéa, C. F., Pasqual, M., De Araujo, A. G., Pereira, A. R. and De Castro, E. M. (2012): Acclimatization and leaf anatomy of micropropagated fig plantlets. — Rev. Bras. Fruticult. 34: 1180–1188. https://doi.org/10.1590/s0100-29452012000400027
Croxdale, J. L. (2000): Stomatal patterning in angiosperms. — Am. J. Bot. 87: 1069–1080. https://doi.org/10.2307/2656643
Engard, C. J. (1944): Organogenesis in Rubus. — Univ. Haivaii, Res. Pub. 21: 1–234.
Furusawa, E., Hirazumi, A., Story, S. and Jensen, J. (2003): Antitumor potential of a polysaccharide-rich substance from the fruit juice of Morinda citrifolia (Noni) on sarcoma180 ascites tumor in mice. — Phytother. Res. 17: 1158–1164. https://doi.org/10.1002/ ptr.1307
Hanley, M. E., Lamont, B. B., Fairbanks, M. M. and Rafferty, C. M. (2007): Plant structural traits and their role in anti-herbivore defense. — Perspect. Plant Ecol. Evol. Syst. 8: 157–178. https://doi.org/10.1016/j.ppees.2007.01.001
Hickey, L. J. and Wolfe, J. A. (1975): The bases of angiosperm phylogeny: vegetative morphology. — Ann. Miss. Bot. Gard. 62: 538–589. https://doi.org/10.2307/2395267
Jain, S. M. (2001): Tissue culture derived variation in crop improvement. — Euphytica 118: 153–166.
Johansen, D. A. (1940): Plant microtechnique. — McGraw-Hill, New York, London, pp. 182–197.
Khan, A. S. and Siddiqi, R. (2014): Environmental factors affect calcium oxalate crystals formation in Tradescantia pallida (Commelinaceae). — Pak. J. Bot. 46: 477–482.
Kostman, T. A., Tarlyn, N. M., Loewus, F. A. and Franceschi, V. R. (2001): Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. — Plant Physiol. 125: 634–640. https://doi.org/10.1104/pp.125.2.634
Lodha, D., Patel, A. K. and Shekhawat, N. S. (2015): A high-frequency in vitro multiplication, micromorphological studies and ex vitro rooting of Cadaba fruticosa (L.) Druce (Bahuguni): a multipurpose endangered medicinal shrub. — Physiol. Mol. Biol. Plants 21: 407–415. https://doi.org/10.1007/s12298-015-0310-6
Luis, Z. G., Bezerra, K. M. G. and Scherwinski-Pereira, J. E. (2010): Adaptability and leaf anatomical features in oil palm seedlings produced by embryo rescue and pre-germinated seeds. — Braz. J. Plant Physiol. 22: 209–215. https://doi.org/10.1590/s1677-04202010000300008
Marin, J. A. (2003): High survival rates during acclimatization of micropropagated fruit tree rootstocks by increasing exposures to low relative humidity. — Acta Hortic. 616: 139–142. https://doi.org/10.17660/actahortic.2003.616.13
Miller, I. M. (1990): Bacterial leaf nodule symbiosis. — Adv. Bot. Res. 17: 163–234. https://doi.org/10.1016/s0065-2296(08)60134-2
Moyo, M., Aremu, A. O. and Van Staden, J. (2015): Insights into the multifaceted application of microscopic techniques in plant tissue culture systems. — Planta 242: 773–790. https://doi.org/10.1007/s00425-015-2359-4
Murashige, T. and Skoog, F. (1962): A revised medium for rapid growth and bioassays with tobacco tissue culture. — Physiol. Plant. 15: 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Pospisilova, J., Ticha, I., Kadleek, P., Haisel, D. and Plzakova, S. (1999): Acclimatization of micropropagated plants to ex vitro conditions. — Biol. Plant. 42: 481–497.
Rethinam, P. and Sivaraman, K. (2007): Noni (Morinda citrifolia L.). The miracle fruit — a holistic review. — Int. J. Noni Res. 2: 4–37.
Roonyamarai, W., Rungsihirunrat, K., Vipunngeun, N. and Ruangrungsi, N. (2011): Microscopic and molecular analyses of selected Morinda species in Thailand. — Asian J. Trad. Med. 6: 118–126.
Sahay, N. S. and Varma, A. (2000): A biological approach towards increasing the rates of survival of micropropagated plants. — Curr. Sci. 78: 126–129.
Sass, J. E. (1940): Elements of botanical microtechnique. — McGraw-Hill, New York, London, 222 pp.
Shekhawat, M. S. and Manokari, M. (2016 a): In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis Aubl.): a multipurpose threatened species. — Physiol. Mol. Biol. Plants 22: 131–142. https://doi.org/10.1007/s12298-015-0335-x
Shekhawat, M. S. and Manokari, M. (2016 b): In vitro regeneration frequency, micro-morphological studies and ex vitro rooting of Hemidesmus indicus (L.) R. Br.: a multipotent endangered climber. — Ind. J. Plant Physiol. 21: 151–160. https://doi.org/10.1007/s40502-016-0216-5
Shekhawat, M. S., Kannan, N., Manokari, M. and Ravindran, C. P. (2015): Enhanced micropropagation protocol of Morinda citrifolia L. through nodal explants. — J. Appl. Res. Med. Aromat. Plant 2: 174–181. https://doi.org/10.1016/j.jarmap.2015.06.002
Shikerkar, P. and Shrikanth, P. (2015): Pharmacognostic study of Achchhuka (Morinda citrifolia). — World J. Pharm. Pharma. Sci. 4: 641–649.
Souza, T. C., Magalhães, P. C., Pereira, F. J., Castro, E. M., Silva Júnior, J. M. and Parentoni, S. N. (2010): Leaf plasticity in successive selection cycles of ‘Saracura’ maize in response to periodic soil flooding. — Pesq. Agropec. Bras. 45: 16–24. https://doi.org/10.1590/s0100-204x2010000100003
Sreeranjini, S. and Siril, E. A. (2014): Field performance and genetic fidelity evaluation of micropropagated Morinda citrifolia L. — Indian J. Biotechnol. 13: 121–130.
Wang, M. Y. and Su, C. (2001): Cancer preventive effect of Morinda citrifolia (Noni). — Ann. N. Y. Acad. Sci. 952: 161–168.
Yokota, S., Karim, M. Z., Azad, M. A. K., Rahman, M. M., Eizawa, J., Saito, Y., Yshiguri, F., Iizuka, K., Yahara, S. and Yoshizawa, N. (2007): Histological observation of changes in leaf structure during successive micropropagation stages in Aralia elata and Phellodendron amurense. — Plant Biotech. 24: 221–226. https://doi.org/10.5511/plantbiotechnology.24.221
Zeiger, E. (1983): The biology of stomatal guard cells. — Annu. Rev. Plant Physiol. 34: 441–475. https://doi.org/10.1146/annurev.pp.34.060183.002301